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Abstract : Traditionally nuclear thermal hydraulic and nuclear safety has relied on numerical simulations to 

predict the system response of a nuclear power plant either under normal operation or accident condition. 

However, this approach may sometimes be rather time consuming particularly for design and optimization 

problems. To expedite the decision-making process data-driven models can be used to deduce the statistical 

relationships between inputs and outputs rather than solving physics-based models. Compared to the 

traditional approach, data driven models can provide a fast and cost-effective framework to predict the 

behavior of highly complex and non-linear systems where otherwise great computational efforts would be 

required.

The objective of this work is to develop an AI algorithm to predict the peak fuel cladding temperature as a 

metric for the successful implementation of FLEX strategies under extended station black out. To achieve 

this, the model requires to be conditioned using pre-existing database created using the thermal-hydraulic 

analysis code, MARS-KS. In the development stage, the model hyper-parameters are tuned and optimized 

using the talos tool.
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1. Introduction

The operation of nuclear power plants may 

experience some events that if not controlled 

or mitigated in a timely fashion, undesired 

results will be incurred. If the event 

progresses into an accident, some 

instrumentation or components degradation or 

even failure may occur under the harsh 

environment of the accident. This may affect 

or delay the operator’s response causing the 

situation to progress into a more complicated 

one. 

This necessitates predicting the system 

response under various conditions to ensure 

the plant safety, soundness of emergency 

procedures and effectiveness of accident 

mitigation measures. Traditionally, nuclear 

thermal hydraulics and nuclear safety have 

relied on numerical simulations to predict the 

system response of a nuclear power plant 

either under normal operation or accident 

condition. However, this approach may 

sometimes be rather time consuming which 

makes it not suitable for monitoring and 

optimization problems, particularly under 

severe accident conditions where fast 

calculation of the performance parameters is 

essential to expedite the decision-making 

process for accident mitigation. This concern 

can be addressed by using artificial 

intelligence (AI) or data-driven approaches. 

Some studies used AI to predict important 

monitoring variables like water reactor level, 

wall temperature at critical heat flux [2], flow 

pattern [3], fault in important systems like 

primary heat transfer systems (PHT) [4], 

nuclear power plant accident identification 

problem (NAIP) [5], reactor system behavior 

[6], and AI has also used for sever accidents 

to predict their major scenarios. Even though 

those studies show accurate results, however 

the use of AI in nuclear industry is still limited 

and therefore more studies need to be 

conducted to fully understand the potential and 

more importantly the limitations of data- 

driven techniques for nuclear safety.

2. Objective

In this work, an AI algorithm is developed 

using an artificial neural network (ANN) to 

accurately predict the peak cladding 

temperature, a performance metric to indicate 

the success of the diverse and flexible coping 

strategy (FLEX) strategy in enhancing the 

plant’s capability to cope with a station 

blackout. For complex nonlinear problems, like 

the problem at hand, the accurate prediction of 

the relationship between the inputs and output 

necessitates an artificial network structure. To 

train the ANN model a thermal-hydraulic 

model is developed using Multi-Dimensional 

analysis of reactor safety (The Korea institute 

of nuclear safety) KINS standard (MARS-KS) 

[3] system code to generate a database of the 

system response under station blackout 

condition. And for efficient planning and 

management of this work, a Systems 

Engineering (SE) approach is adopted. 

3. Systems Engineering Approach

For this work, the Kossiakof Systems 

Engineering method [4] is implemented 
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starting with stakeholder identification and 

requirement analysis, functional and physical 

definitions, all the way to model verification 

and validation.

3.1 Stakeholders Identification

The stakeholders can be categorized into 

four main groups with economic, social, 

environmental and technical interests, as 

shown in Table 1.

<Table 1> Stakeholders categorization

Category Stakeholders

Social
� Public 

� Media

Economic

� Utility

� Nuclear Industry

� Government

� Investors

� Manufacturers

� Suppliers

Technical

� Regulators 

� Researchers and scientists

� Contractors

� Engineers

� Technicians

� Operators

Environmental

� Environmental Regulators

� Neighboring Countries

� Pressure Groups

3.2 Requirements Derivation

This step is needed to establish a 

systematic procedure for the ANN model 

development, while simultaneously meeting the 

stakeholders’ needs. Table 2 summarizes these 

requirements which can be categorized into 

three main groups: mission requirements, 

originating requirements, and system and 

component requirements. 

3.2.1 Mission Requirements

These requirements are derived from 

stakeholders needs. The model should 

correctly predict the peak cladding 

temperature with sufficient accuracy to earn 

the stakeholders confidence in application of 

AI in nuclear industry as a computationally 

efficient prediction tool. Hence the mission 

requirement is set to satisfy the regulatory 

requirements on the main stakeholder 

requirement for the society.

Requirements Description

Mission 

Requirements

1. The model shall be capable of 

correctly predicting peak 

cladding temperature.

2. The model should be able to 

predict the temperature 

without using a physical 

simulation (Code) and using 

independent variables. 

Originating 

Requirements

1. The ANN model is able to 

predict PCT using predefined 

databases without overfitting 

or underfitting. 

System 

Requirements

1. The predicted temperatures 

shall satisfy a linear 

correlation coefficient of at 

least 0.90.

2. The error shall be within 0.5 

%.

3. The error of validation dataset 

shall be lower or equal the 

error of the training dataset.

4. The error of the training 

dataset shall not be larger 

than the error of the 

validation dataset. 

5. The dataset used shall satisfy 

the 95/95 tolerance limit 

according to the UNSRC 

regulatory guide 1.105.[9]

<Table 2> ANN Model requirements for peak 

cladding temperature prediction
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3.2.2 Originating Requirements

Originating requirements should reflect 

statements made by the stakeholders about the 

system’s capabilities; hence, they should 

define the constraints and performance 

parameters which should be met by the 

system. Specifically, the ANN model should be 

able to predict the PCT using predefined 

databases without overfitting or underfitting.

3.2.3 System Requirements

These requirements are a translation of the 

originating requirements into “engineering 

language”, where it becomes much more 

detailed than the originating requirements. 

These requirements are actually related the 

determination coefficient (R2) that represents 

how the predicted values match the actual 

values. Additionally, it sets constraints on the 

model accuracy, while preventing overfitting 

and hence maintaining the model 

generalization.

Finally, the dataset that would be used for 

new predictions shall fulfill the uncertainty 

requirement of 95% probability and 95% 

confidence set by the USRNC regulatory guide 

for best estimate analysis.[9] 

3.3 Model Architecture

The model architecture discusses the 

organization of the model and can be split into: 

functional architecture and physical 

architecture. 

3.3.1 Functional Architecture

The functional architecture of the prediction 

model is shown in Figure (1). The model takes 

in the inputs, tunes the model hyper- 

parameters during the optimization process on 

a subset of the data, uses another subset of 

the data during training process, and last 

subset of data is used during the evaluation 

process, at which point the model is ready to 

predict the output for a set of input para 

meters.

[Figure 1] top to bottom functional architecture

3.3.2 Physical Architecture

The physical architecture depends on the 

type of problem, but includes the following key 

items as shown in Figure (2).

Model function determines the type of the 

model. The sequential model is the most 

suitable type for the problem at hand. 

Layer function determines the layer kind 

which is also problem dependent. In this work 

a dense network is used. 

Model configuration or ANN architecture can 

be either triangle, brick, or funnel.

Compiler function where the loss (error) 

function, optimizer type, and prediction metric 

are defined.

Fit function includes the test or/and 

validation datasets, batch size, and the number 
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of epochs are defined.

Evaluation function is used to examine the 

best model obtained from the optimization 

process.

This structure is deployed as Jason model, 

where it could be easily invoked for making 

new prediction for peak cladding temperature.

3.4 Verification and Validation

The validation process is required to prove 

the ability of the model to satisfy the condition 

of generalization. This checked by monitoring 

the model performance on both training and 

test datasets, the metric and the loss function 

are used to make a decision about the model 

performance.

During development phase, the model is 

usually validated by splitting the dataset into 

training and validation subsets. The model is 

evaluated at the end of each epoch using the 

validation subset. The evaluation model is 

validated using subset that is derived from the 

whole dataset that had been collected as 

shown in section (4) in this paper and 

according to v-model as shown Figure (4). 

[Figure 2] ANN model architecture

[Figure 3] ANN model context diagram
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[Figure 4] ANN V-model

4. Data Collection and Model 

Development

4.1 Data Collection 

The dataset used for building the AI model 

had been generated from the uncertainty 

quantification for the SBO scenario. 16 

uncertain parameters were used to express 

the big phenomena that occur in the accident, 

the impact of the various uncertain 

parameters, shown in tables (3) and (4), on 

the PCT was assessed by building a 

framework coupling the thermal hydraulic 

code, MARS-KS and the statistical tool, 

Dakota [6], using python programming 

language as shown in Figure (5). 

The uncertain parameters were identified 

based on the phenomena identification and 

ranking table (PIRT) developed by Kang et al. 

[7] and on the uncertainty analysis performed 

by Kozmenkov et al. [8] and by Lee et al.[9]

Next, the uncertain parameters were sampled 

and propagated into the developed thermal 

hydraulic model, using Dakota to produce the 

minimum number of samples that ensures the 

United States nuclear regulatory commission 

(USNRC) requirements of 95% probability and 

95% confidence. The produced dataset 

contained 924 samples in total and included 17 

variables, 16 of them are independent 

variables (P1 –P16) and the 17th variable is 

the dependent quantity that is the PCT. Those 

independent variables were used as an input 

for the artificial neural network model to 

predict the dependent quantity.

The accident can be divided into two main 

phases before and after FLEX implementation. 

Spearman’s correlation was applied to measure 

the degree of correlation between the input 

parameters of every phase and the PCT. The 

Spearman’s correlation was selected because 

of the nonlinearity of the data. It is worth 

noting that the sensitivity study revealed that 

not all of the variables of the thermal hydraulic 

model were strongly impacting the peak 

cladding temperature. Hence, to cut down the 

[Figure 5] Database generation using Dakota
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training time for the AI model, only three input 

features were selected for every phase, given 

their strong correlation with the output. For 

the first phase (before FLEX implementation), 

those features are reactor power (P1), initial 

pressurizer level (P8), and the multiplier for 

vapor Dittus-Boelter correlation (P11). This 

work involves the development of two 

separate models: the ANN model and the 

thermal-hydraulic model. First each model is 

introduced followed by the work flow within 

each model and the interaction between the 

two models.

4.2 MARS-KS Simulation

A station blackout (SBO) is an accident 

scenario where all the plant’s alternating 

current electric power sources are lost. This 

renders many of the safety systems 

unavailable which may lead to inventory loss, 

core uncover and threaten the plant’s integrity. 

Accordingly, many utilities have adopted the 

diverse and flexible strategies (FLEX) to 

enhance the coping capability of their advanced 

nuclear reactors. 

Symbol Range Distribution

P1 0.98-1.02 Normal

P2 0.92-1.08 Uniform

P3 0.98-1.02 Normal

P4 0.90-1.10 Normal

P5 0.974-1.026 Uniform

P6 0.982-1.017 Uniform

P7 0.974-1.026 Uniform

P8 0.85-1.15 Uniform

P9 0.8-1.2 Uniform

P10 0.8-1.2 Uniform

P11 0.95-1.05 Uniform

P12 0.8-1.2 Uniform

P13 0.88-1.12 Normal

P14 0.93-1.23 Uniform 

P15 0.93-1.23 Uniform

P16 0.94-1.06 Uniform

<Table 4> Uncertain parameters characteristics

Phenomenon
Uncertain parameter 

(symbol)

Thermal power 

generation in core

Initial total reactor 

power (P1)

Decay heat power 

(P2)

Primary system 

energy accumulation

Fuel heat capacity 

(P3)

Fuel conductivity (P4)

Primary and 

secondary systems 

pressure control

Initial pressure in 

pressurizer (P5)

Set point for 

pressurizer relief 

valve (P6)

Initial pressure in the 

steam generator (P7)

Heat removal ( from 

primary and 

secondary systems)

Multipler for liquid 

Dittus-Boelter 

correlation (P8)

Multipler for vapor 

Dittus-Boelter 

correlation (P9)

Multiplier for Chen 

nucleate boiling model 

(P10)

Coolant flow (primary 

system)

Initial total mass flow 

rate (P11)

Total moment of 

inertia for circulation 

pumps (12)

Coolant injection by 

emergency Core 

Cooling Systems 

ECCSs and mobile 

pumps (primary and 

secondary systems)

Initial coolant 

inventory in SITs 

(P13)

Initial pressure in 

SITs (P14)

Initial coolant 

temperature in SITs 

(P15)

Initial temperature in 

the mobile pumps 

(P16)

<Table 3> SBO phenomena and uncertain 

parameters 
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The peak cladding temperature (PCT) is an 

important metric that can be used to assess 

the success of the FLEX strategies. Peak 

cladding temperature refers to the temperature 

of the material that surrounds the fuel, and if 

not maintained below 1477 K. If it is not 

maintained, this structure will collapse and the 

radioactive material will be released. So, if the 

PCT is maintained well below 1477K, the fuel 

integrity can be assured. However, the 

success window of FLEX implementation relies 

on various initial and operating conditions that 

may be uncertain at the time of the accident. 

This work builds on a previous work [6], 

where a best estimate plus uncertainty 

(BEPU) analysis was performed to analyze a 

station blackout for APR1400 nuclear reactor 

to ensure the successful implementation of the 

emergency operating procedures. A model of 

the plant is used to generate the system 

response using the realistic multi-dimensional 

thermal hydraulic system code MARS-KS 

V1.4. The SBO model assumptions are:

� FLEX equipment is aligned at 2 hours.

� RCP seal leakage is 21 gpm.

� Battery power is guaranteed for 8 hours.

� Feed and bleed are performed on the 

secondary side.

� Safety injection pump is unavailable.

� Shutdown cooling pump is unavailable.

� Auxiliary charging pump is unavailable.

� Motor driven auxiliary feed water pump 

is unavailable.

4.3 Model Workflow

The workflow used in this work follows the 

general path used for any model development 

regardless of the application as shown in 

Figure (6).

[Figure 6] ANN model building workflow

The first step is to gather data that is either 

produced by a physics-based simulation code 

or collected from measuring devices in 

experiments or from historical data that were 

measured through the operational life. For this 

work, the database was produced by the 

MARS-KS thermal hydraulic system code 

coupled with the statistical tool, Dakota, to 

propagate the uncertain parameters into the 

thermal hydraulic model. This is achieved by 

using a python script to provide a 

communication interface between the two 

codes as previously explained and shown in 

Figure (5).

Next, the data should be transformed into 

useable form in what is known as data 

preprocessing. Different transformations may 

be needed starting with data cleaning, 
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centering and normalization. The 

transformation may be performed on inputs, 

output, or both. 

Data transformation is required because the 

inputs have different unit, this leads to 

variables with different scales. These 

differences may make problem modeling very 

hard, however training of unscaled variables 

results in a model with large weights, thus the 

model performance will be poor.

In this work, the transformation technique 

that had been used was normalization which 

was only applied on the dependent variable 

because the inputs were normalized by Dakota. 

The dependent variable is a real value (PCT), 

so the difference in scale was large. 

As shown in the Equation (1) below.

(1)

The third step is the model optimization. 

This is the most challenging phase, in which 

the model searches for the best combination of 

hyper parameters that will enhance its 

prediction capability while avoiding both 

underfitting and overfitting. There are a 

number of optimization tools available, for 

example, the KERAS tuner.

In this work the talos tool [11] as shown in 

Figure (7), had been used to optimize 

hyper-parameters and network configuration 

using the random search method. The random 

search technique is recommended for models 

with a large number of hyper parameters.[10] 

This makes it a very practical and efficient 

tool for model tuning. 

Considering the ANN structure, mainly three 

different shapes could be tested, these are: 

triangle, brick, and funnel. 

Using the talos tool [11], more than 1729 

models were tested with different 

combinations of hyper-parameters to search 

for the best model. In this work the best model 

was deployed and used for the prediction of 

the peak cladding temperature.

The analysis includes reporting the results 

and doing the prediction, and according to the 

prediction results the model even finalized or a 

second round of optimization started after 

parameters enhancement by increasing or 

decreasing their values, that depends on the 

result of the correlation matrix sensitivity, on 

the other hand, some parameters could be 

tested using statistical analysis to catch the 

best one like loss function and the optimizer 

type. For this work, the best model 

parameters are shown below in Table 5.

[Figure 7] talos optimization work flow
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4. Results

The developed ANN model has the structure 

shown in Figure (8), with an input layer, two 

hidden layers and an output layer.

This triangular configuration was suggested 

by talos tool, with 32 neurons in the first 

hidden layer and 16 nodes in the second one.

The model successfully predicts the peak 

cladding temperature with a root mean squared 

error of 0.77 Kelvin, mean absolute error is 

0.60, and the coefficient determination (R2) is 

0.93. This proves that the AI model can 

successfully capture the salient characteristics 

embedded in the database and reflect with 

reasonable accuracy the relationship between 

input and outputs.

[Figure 8] ANN prediction Model Architecture

5. Conclusion

In this work, the ability of artificial neural 

network to predict a key performance metric 

for reactor safety, specifically, the peak 

cladding temperature, given a set of initial and 

operating conditions. The model can be 

therefore used to monitor critical variables 

related to nuclear safety and help in the 

decision making process in a timely fashion. 

However, more studies are required to confirm 

the ability, and more importantly, the 

limitations of the model in handling databases 

resulting from different accident scenarios 

before any concrete conclusions can be 

derived in relation to the nuclear safety 

applications in real power plants.
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Number Hyperparameter

Value 

(in this 

work)

1 Optimizer Adam

2 Initializer Normal

3 Learning rate 3.0007

4
Activation function 

(output layer)
Linear

5
Network shape 

(configuration)
Triangle

6 Epochs 1000

7
Number of neurons if 

the first hidden layer
32

8 Batch size 41

9 Hidden layers number 1

10 Dropout 0

11

Activation function 

(input layer and hidden 

layers)

Relu

<Table 5> Best ANN model hyperparameters
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