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Abstract : On March 11, 2011, an earthquake followed by a tsunami caused an extended station blackout 

(SBO) at the Fukushima Dai-ichi NPP Units. The accident was initiated by a total loss of both onsite and 

offsite electrical power resulting in the loss of the ultimate heat sink for several days, and a consequent core 

melt in some units where proper mitigation strategies could not be implemented in a timely fashion. To 

enhance the plant’s coping capability, the Diverse and Flexible Strategies (FLEX) were proposed to append 

the Emergency Operation Procedures (EOPs) by relying on portable equipment as an additional line of 

defense. To assess the success window of FLEX strategies, all sources of uncertainties need to be 

considered, using a physics-based model or system code. This necessitates conducting a large number of 

simulations to reflect all potential variations in initial, boundary, and design conditions as well as 

thermophysical properties, empirical models, and scenario uncertainties. Alternatively, data-driven models 

may provide a fast tool to predict the success window of FLEX strategies given the underlying uncertainties. 

This paper explores the applicability of Artificial Intelligence (AI) to identify the success window of FLEX 

strategy for extended SBO. The developed model can be trained and validated using data produced by the 

lumped parameter thermal-hydraulic code, MARS-KS, as best estimate system code loosely coupled with 

Dakota for uncertainty quantification. A Systems Engineering (SE) approach is used to plan and manage the 

process of using AI to predict the success window of FLEX strategies under extended SBO conditions.
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1. Introduction

For an extended station blackout (SBO) 

scenario, when all power sources are lost, the 

main feedwater MFW pumps will be lost too, 

but turbine-driven auxiliary feedwater pumps 

(TDAFWPs) will take over for 8 hours until 

DC battery depletion. At which point, the 

secondary side heat sink will be lost and the 

plant undergoes a severe accident unless the 

FLEX strategies are implemented. To prevent 

the nuclear plant from undergoing a severe 

accident, operators should strictly follow 

appropriate emergency operation procedures 

(EOPs) given that all plant safety systems 

work as expected. 

Additionally, the FLEX strategy which 

involves the deployment of portable equipment 

may be implemented to provide core cooling. 

The FLEX strategy is considered to fail when 

the peak cladding temperature (PCT) exceeds 

1477 K. Assessing the success window of the 

implementation of the FLEX strategy can be 

achieved via deterministic safety analysis 

using the best estimate plus uncertainty 

methodology, which may be time-consuming. 

It may also be assessed using data-driven 

models as a computationally efficient 

alternative. 

This work explores the use of the latter 

approach to identify the success window of 

FLEX strategy implementation under extended 

SBO conditions.

To achieve this goal, the Systems 

Engineering (SE) approach is adopted to plan 

and manage the application of Artificial 

Intelligence (AI) using an artificial neural 

network (ANN) to predict the plant response 

to an extended SBO.

To train the ANN model, a dataset is 

generated using a thermal-hydraulic model. 

The database uses the maximum core 

temperature, PCT, as a metric for the plant 

response to evaluate the effectiveness of the 

implemented strategy as a function of key 

system parameters. 

This work builds on a previous work 

(Ricardo and Diab 2019) where the Best 

Estimate Plus Uncertainty (BEPU) approach is 

implemented to ensure that key uncertainties 

are considered.

2. Methodology

The methodology followed in this paper can 

be divided into two main sub-sections. The 

first section describes the thermal-hydraulic 

model and the second section describes the 

artificial neural network model.

2.1 TH Model Development 

The first step is to develop a 

thermal-hydraulic model of APR 1400 under 

SBO scenario. In order to create a dataset for 

training and validation of the AI algorithm, a 

thermal-hydraulics model was developed to 

assess the impact of the uncertainty 

parameters on the PCT which is used as a 

success criterion of the FLEX strategy. This is 

achieved by coupling the thermal-hydraulic 

code, MARS-KS to the statistical tool, Dakota, 

using Python programming language to provide 

the communication interface as shown in 

Figure.1. MARS-KS V1.4 is used to model the 

fluid behavior, reactor kinetics, and heat 
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transfer, while Dakota is used to propagate the 

input parameters including underlying 

uncertainties throughout the thermal-hydraulic 

model. 

The uncertainty analysis is performed using 

a set of uncertain parameters derived from 

key phenomena that govern the accident 

progression as identified in previous studies 

(Kang et al., 2013). This thermal-hydraulic 

model is used to create the dataset that will be 

used to train the AI model.

[Figure 1] Uncertainty Analysis Framework

2.2 AI Model Development

The utilization of AI in the field of nuclear 

safety has been limited, despite the proven 

advantages of fast and accurate prediction 

which makes it an area worthwhile for further 

research (Mario et al., 2017). In this work, the 

developed AI algorithm utilizes the ANN 

technique. The ANN is used to model the 

mathematical relationship between the inputs 

and output via a set of artificial neurons that 

are interconnected by weights and biases. 

During the training phase, these weights and 

biases are adjusted to reflect the salient 

relationship between inputs and outputs, hence 

predict the outputs. As shown in Figure. 2 the 

ANN has three types of layers, an input layer, 

a hidden layer, and an output layer. 

The network involves an input layer that 

contains the input signal, an output layer that 

generates the output of the network, and a 

hidden layer that performs the nonlinear 

transformations of the input to reflect the 

complex and usually nonlinear mathematical 

relationship between the input and output. For 

the case at hand, the ANN algorithm acts as a 

classifier, going through the database to 

identify the successful implementation of FLEX 

strategy given a certain set of initial, and 

operating conditions.

[Figure 2] Neural Network Representation

3. Systems Engineering Approach

A SE approach is used in this study to plan 

and manage the development of the process of 

the AI algorithm, with verification and 

validation tests conducted at every phase of 

development to ensure that all requirements 

are met within satisfactory limits. The 

V-Model, shown in Figure. 4, illustrates a set 

of verification and validation activities that 

guides this work development by linking each 
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requirement to a validation or verification test 

with predefined success criteria. The V-model 

provides a holistic understanding of the whole 

process with integrated systems requirements 

that streamlines the work, reduces the errors 

and expedites the process.

3.1 Requirement Analysis 

During the project design phase, the 

requirement analysis was conducted to identify 

the mission of this research which is 

developing an AI algorithm to predict the 

success window of FLEX strategy to prevent 

the system from undergoing a severe accident 

based on the success criteria explained earlier. 

As illustrated in Figure. 3 the first originating 

requirement for this mission is utilizing the 

Uncertainty Quantification model to produce a 

dataset that satisfies the regulatory 

requirement for safety margin prediction with 

95% probability and 95% confidence level. The 

second originating requirement is to develop 

an AI Model that predicts accurately and 

precisely the FLEX success window using the 

dataset. The derived requirements are training 

and optimizing the AI Model then deploy it and 

test it for generalization.

3.2 System Design Phase

In this phase, the AI model will be 

developed to predict the success of the FLEX 

strategy. This model will be trained using a 

pre-existing database generated using the 

thermal-hydraulic model, and subsequently 

tested by comparing its prediction with the 

output predefined by the database.

[Figure 3] Requirement Analysis

The originating requirement is the 

development of the model that shall predict 

whether the mitigation strategy succeeds for 

various initial and operating conditions. The 

model shall perform robustly, quickly, and 

accurately solely based on the database and 

not the physics-based model. Therefore, once 

developed, the model shall obtain the 

prediction faster than the conventional 

deterministic methods. Additionally, the model 

shall be able to process big size data with 

reasonable accuracy and generalization. 

3.3. Architectural Design

When it comes to system architecture, two 

codes (MARS-KS and Dakota) are loosely 

coupled using Python programming language to 

provide the two-way communication interface 

as shown in Figure. 5. This process requires 

generating a big dataset to train the AI 

algorithm to perform well.
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3.3.1 Accident Scenario

Selecting the accident scenario is an 

essential step to identify the functional and 

physical architecture which will be considered 

in the development of an extended SBO for 

APR1400 thermal-hydraulic model as 

illustrated in Figure. 6. 

3.3.1.1 Constraints and Assumptions

The derived requirements include the 

systems and components requirements which 

impose limits and constraints. For the 

extended SBO scenario, the AC power and 

emergency diesel generators shall not be 

available, i.e. all motor-driven pumps shall not 

be available. The battery should provide power 

for up to 8 hours only then the FLEX 

equipment should be used, assuming they are 

aligned at 2 hours. The operator shall provide 

feed and bleed operation to remove the decay 

heat, the reactor coolant pump (RCP) seal 

leakage is expected to occur due to loss of 

component cooling water pump, and any 

operator action is given 30 minutes. The 

maximum shutoff head of the primary mobile 

pump shall be 1.223 MPa while the maximum 

shutoff head of the secondary mobile pump 

shall be 0.223 MPa. All these limits and 

constraints are considered in the 

thermal-hydraulic model development.

3.3.1.2 Nodalization 

The main systems and components of the 

APR 1400 plant are listed in Table 1. The 

plant is represented using the simplified 

nodalization shown in Figure. 7, where the 

[Figure 4] V-Model
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turbine and containment are represented each as a boundary condition using time-dependent 

volumes.

3.3.2 Functional Architecture

The functional architecture describes the 

main functions that need to be executed to 

prevent the plant from undergoing a severe 

accident. The most important function is to 

maintain core cooling by establishing and 

maintaining natural circulation. This is 

achieved by providing water to the steam 

generators (SGs) and establishing a flow path 

on the secondary side by opening the 

<Table 1> APR 1400 Systems and components

[Figure 5] Architectural Design

[Figure 6] Accident Scenario
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atmospheric dump valves (ADVs). 

Depressurization is another function that can 

be achieved by releasing the primary system 

pressure and the secondary system pressure 

to enable the safety injection and/or external 

injections. Furthermore, core coverage should 

be ensured by maintaining the RCS inventory 

by providing water to the primary system as 

illustrated in Fig.8.   

While the functional architecture for the AI 

model describes the training, validation, and 

model deployment. The dataset generated by 

the thermal-hydraulic model and used for the 

AI algorithm development is divided into two 

sets one for training the algorithm and the 

other for testing it. Once developed, the model 

can be used as a predictive tool. The 

functional architecture for the AI model 

[Figure 8] APR 1400 Extended SBO Functional Architecture

[Figure 7] MARS-KS Nodalization
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involves processing the dataset according to 

four main steps. Preprocessing is the first step 

and involves data cleaning, zero centering, and 

normalization of the data. The second step is 

the model development which includes the 

number and shape of layers, number of 

neurons per layer, model training, optimization 

of network structure and topology, and tuning 

the model hyper-parameters. The third and 

fourth steps are the validation then deployment 

of the model for prediction. 

3.3.3 Physical Architecture

Physical architecture represents the main 

systems and components available under SBO 

condition which are linked to the functional 

architecture. The main components that will be 

included in the APR 1400 model under 

extended SBO are the RCP, safety injection 

tank (SIT), FLEX portable pump for injection 

into the core, and the pilot-operated safety 

release valves (POSRVs) for depressurization 

of the primary side. For the secondary side, 

the main components include the SGs, 

TDAFWPs, and ADVs for cooling and 

depressurization, the main steam safety valves 

(MSSVs) for secondary system pressure 

relief, and depressurization as well as the 

FLEX portable pumps for water injection into 

the SGs. 

Regarding the physical architecture the AI 

model, shown in Figure.2, illustrates the ANN 

which consists of an input layer, a number of 

hidden layers, and an output layer. The ANN 

architecture is established after a series of 

trials to reach the most compact and 

computationally efficient network that can 

capture the salient features imbedded in the 

dataset with fast convergence and sufficient 

generalization. This can be achieved by 

optimizing the network hyperparameters, i.e. 

the activation functions weights and biases, the 

ANN structure and topology including network 

shape, number of hidden layers, and number of 

nodes in each layer. This was achieved using 

the TALOS optimization tool. Additionally, the 

fraction of the dataset used for training and 

testing can be manipulated during the model 

optimization process.

3.4 Module Development Phase

This phase involves the development of the 

thermal-hydraulic (TH) model and the AI 

model. The TH model shall correctly simulate 

the plant response. The AI model shall be 

developed to accurately classify the plant 

response correctly for the various input 

parameters.

The requirement for this phase is to 

generate an accurate and big size dataset from 

the verified and validated base case accident 

simulation. The AI algorithm shall be able to 

process the data and train the model to 

classify the output with reasonable accuracy.

3.5 Implementation Phase

The implementation phase starts by 

preprocessing the dataset created by the TH 

model by cleaning, zero-centering, 

normalizing, and splitting the dataset into a 

training dataset and a testing dataset. The next 

step is developing the AI model by using the 

training dataset to train the ANN. After that, 

the trained model shall be validated using the 

test dataset. Once the trained model is 
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validated, it shall be able to classify the 

success window of the FLEX strategy based 

on the plant response for a given combination 

of initial conditions and operation parameters.

3.6 Verification and Validation Phase

The purpose of verification is to make sure 

that the designed and built systems meet the 

requirements specified during the design 

development stage, while the purpose of 

validation is to ensure that the given outcome 

is matching the mission requirements (Ryan et. 

al., 2017). The verification process is 

implemented at the unit and integrated model 

levels. In the unit test, both models shall be 

verified to check if they perform well 

independently and each gives the expected 

output using dummy data. While in the 

integration test, the AI model shall perform 

well with the dataset generated by the TH 

model which correctly reflects the plant 

response using a qualified model of the plant. 

In the system validation test, the AI model 

shall be checked for overfitting and 

generalization. The AI model is acceptable if it 

is capable of predicting the FLEX success 

window with the required accuracy.

The model accuracy and precision can be 

checked using the confusion matrix (CM). The 

CM describes the performance of a 

classification model on a set of test data, for 

which the true values are known. For binary 

class problems, there are 4 performance 

metrics, on the one hand: true positive and 

true negative (TP and TN) and on the other 

hand: false positive and false negative (FP and 

FN). From these 4 metrics, 4 types of scores 

can be generated that determine the prediction 

accuracy, precision, recall, and F1 score 

(Gharam et. al., 2020).

The prediction accuracy is the sum of true 

positive and true negative divided by both true 

and false positive (TP, FP) and true and false 

negative (TN, FN). Accuracy, therefore, 

indicates the ratio of correctly predicted 

observation to the total observations and can 

be calculated as follows:

       
   

It is worth noting that accuracy is not the 

right metric to evaluate the prediction in case 

of class-imbalance problem, where the subset 

of the database representing one class is much 

smaller than that representing the other class. 

The metrics precision and recall are 

recommended for this kind of problem. 

Precision represents the fraction of correctly 

predicted positive observations to the total 

predicted positive observations and has 

therefore to be as high as possible. Precision 

can be calculated as follows:

  


F1 score takes both false positives and false 

negatives into account via a weighted average 

of both Precision and Recall:

  Pr  

Pr 

Its value ranges from 0 to 1 and the higher 
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its value the better the classifier. In fact, F1 is 

a more useful indicator than accuracy, 

especially with uneven class distribution. 

Accuracy works best if false positives and 

false negatives have a similar cost. However, 

if the cost of false positives and false 

negatives are very different, it’s better to 

consider the F1 score.

The Receiver Operator Curve (ROC) and 

Area Under the Curve (AUC) are very 

important metrics to evaluate the model 

prediction capability. ROC is a graph showing 

the performance of a classification model at all 

classification thresholds. It pictorially 

compares the True Positive Rate (TPR) which 

represents the model sensitivity to the False 

Positive Rate (FPR) which represents the 

model specificity. The AUC represents the 

degree to which the model can separate the 

different classes. The AUC of the ROC should 

therefore be close to 1. Considering Figure. 9, 

the ROC shall be as far as possible from the 

dotted line if the model is to have a good 

prediction capability and have a high AUC. 

3.6.1 Unit Testing

In the unit test, the performance of both 

models shall be verified separately to make 

sure that they can predict the expected output 

using a dummy dataset. To verify the AI 

model, it shall be trained using a dummy 

dataset to verify that the algorithm is working 

properly. And to verify the behavior of the 

components inside the simulation module of 

the SBO accident scenario, the steady state 

response shall be compared with the 

corresponding values reported in the DCD. 

Additionally, the model predictions for the 

plant transient response shall be compared 

with previous research papers and the 

uncertain parameters shall be checked for 

independency. Both models shall be tested and 

shall work well separately.

[Figure 9] Receiver Operator Curve (ROC) and Area Under the Curve (AUC).



시스템엔지니어링 학술지 제16권 2호. 2020. 12 

A Systems Engineering Approach to Predict the Success Window of FLEX Strategy under Extended SBO Using Artificial Intelligence 107

3.6.2 Integration Testing

In the integration test, the AI model shall 

perform well with the dataset generated by the 

TH model which correctly reflects the plant 

response for a qualified model of the plant. 

The AI model shall perform well in classifying 

the FLEX success window when trained using 

the verified dataset generated by the TH 

Model. To verify the model performance, the 

prediction shall be checked and evaluated 

using the Recall value which indicates how 

well the model predicts the already known 

class based on the pre-existing database.

3.6.3 System Testing

In system validation test, the AI model shall 

be checked for overfitting and generalization. 

The trained AI model prediction shall be 

verified using the testing subset of the 

database with acceptable accuracy while 

avoiding overfitting. Overfitting can be 

identified by comparing the training and 

validation accuracy, if the training accuracy is 

higher than the validation accuracy, then the 

model suffers from overfitting.

3.6.4 Acceptance Testing

This test emphasizes that the model should 

predict the success window of the FLEX 

strategy accurately and with enough 

generalization. The model is considered 

acceptable if the predictions are matching the 

predefined outputs in the testing subset of the 

database (unseen dataset) with an accuracy of 

around 95.4%, which confirms the 

generalization of the model.

4. Results

Once the ANN has been developed through 

training, validation, and optimization process it 

can now be used to predict the classification of 

different scenarios of extended SBO accident 

using various initial and operating conditions 

(features) to reflect the spread of uncertain 

parameters. Figure. 10 illustrates the 

distribution of TP, TN, FP, and FN as 

predicted by the trained model. Out of 954 

success cases, the model predicts correctly 

927 cases of successful implementation of the 

FLEX strategy. Clearly, the model can predict 

the success window with an acceptable 

accuracy of 95.4%, a precision of 99%, a 

Recall of 97%, and an F1 score of 0.49%. 

However, for uneven classes distribution the 

best indicator is F1 score and in this case F1 

score is low. This result means that failed 

cases are predicted with a much lower 

accuracy because the dataset representing the 

failed cases in the original database is 

relatively small.

Figure. 11 shows that the AUC of the ROC 

is 0.96, i.e. very close to 1, which means that 

the prediction capability is considered very 

well.

[Figure 10] Confusion Matrix
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[Figure 11] Model ROC Curve and AUC

6. Conclusion

The SE approach has been adopted to plan 

and manage the current work. The V-model 

provided a useful tool by ensuring that the 

requirements are met at each phase of the 

project development.

A TH model with uncertainty quantification 

of the plant response under extended SBO was 

developed to create the database for the AI 

algorithm. Once the AI algorithm was 

successfully developed and trained, it was 

used to predict the PCT of an unseen subset 

of the database.

Although the development of the AI 

algorithm is time-consuming; but once 

developed, the prediction can be obtained 

much faster than conventional deterministic 

methods. This may be particularly useful in 

expediting the decision-making process under 

severe accident conditions. This is the focus of 

an ongoing research effort that is being 

conducted in parallel to this work.
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