DOI QR코드

DOI QR Code

Assessment of Soil Erosion and Sedimentation in Cheoncheon Basin Considering Hourly Rainfall

시강우를 고려한 천천유역의 토양침식 및 퇴적 평가

  • Kim, Seongwon (Emergency Management Institute, Kyungpook National University) ;
  • Lee, Daeeop (Emergency Management Institute, Kyungpook National University) ;
  • Jung, Sungho (Department of Disaster Prevention and Environmental Engineering, Kyungpook National University) ;
  • Lee, Giha (Department of Construction & Disaster Prevention Engineering, Kyungpook National University)
  • Received : 2019.11.05
  • Accepted : 2020.03.25
  • Published : 2020.04.01

Abstract

In recent years, the frequency of heavy rainfall associated with high rainfall intensity has been continuously increasing due to the effects of climate change; and thus also causes an increase in watershed soil erosion. The existing estimation techniques, used for the prediction of soil erosion in Korea have limitations in predicting the: average soil erosion in watersheds, and the soil erosion associated with abnormal short-term rainfall events. Therefore, it is necessary to consider the characteristics of torrential rainfall, and utilize physics-based model to accurately determine the soil erosion characteristics of a watershed. In this study, the rainfall kinetic energy equation, in the form of power function, is proposed by applying the probability density function, to analyze the rainfall particle distribution. The distributed rainfall-erosion model, which utilizes the proposed rainfall kinetic energy equation, was utilized in this study to determine the soil erosion associated with various typhoon events that occurred at Cheoncheon watershed. As a result, the model efficiency parameters of the model for NSE and RMSE are 0.036 and 4.995 ppm, respectively. Therefore, the suggested soil erosion model, coupled with the proposed rainfall-energy estimation, shows accurate results in predicting soil erosion in a watershed due to short-term rainfall events.

최근 기후변화의 영향으로 단기간동안 높은 강우강도의 집중호우 빈도가 증가하고 있어 토양침식의 위험도가 증가할 것으로 보고 있다. 국내에서 적용하고 있는 토양침식 산정기법은 유역에서 발생하는 연 평균 토양침식을 예측하고 단기간에 발생하는 특별한 호우사상의 특징을 고려하여 침식을 예측하는 데 한계를 지니고 있다. 따라서 단기간에 발생하는 토양침식을 보다 합리적으로 해석하기 위해서는 단기 호우사상의 특징을 반영하고 침식과정을 물리적으로 해석할 수 있는 모형을 적용할 필요가 있다. 본 연구에서는 단기호우사상에 의한 토양침식을 산정하기 위하여 강우강도별 강우입자분포자료를 수집하였고 확률밀도함수를 적용하여 멱함수 형태의 강우운동에너지 산정공식을 제안하였다. 제안한 강우에너지 산정공식을 물리적 기반의 토양침식 모델에 적용하여 천천유역에서 발생한 2002년 2003년, 2007년 태풍 호우사상에 적용하였다. 그 결과, NSE는 0.036 증가하였고 RMSE는 4.995 ppm 감소한 결과를 보여 제안된 강우에너지 산정공식을 적용한 모형이 단기호우사상에 의한 유사유출을 잘 모의하는 것으로 나타났다.

Keywords

References

  1. Assouline, S. and Mualem, Y. (1989), The similarity of regional rainfall : a dimensionless model of drop size distribution, Transactions of the ASAE, Vol. 32, No. 4, pp. 1216-1222. https://doi.org/10.13031/2013.31137
  2. Cataneo, R. and Stout, G. E. (1968), Raindrop-size distributions in humid continental climates, and associated rainfall rate-radar reflectivity relationships, Journal of Applied Meteorology, Vol. 7, No. 5, pp. 901-907. https://doi.org/10.1175/1520-0450(1968)007<0901:RSDIHC>2.0.CO;2
  3. Carter, C. E., Greer, J. D., Braud, H. J. and Floyd, J. M. (1974), Raindrop characteristics in South Central United States, Transactions of the ASAE, Vol. 17, No. 6, pp. 1033-1037. https://doi.org/10.13031/2013.37021
  4. Choi, J. W., Ryu, J. C., Kim, I. J. and Lim, K. J. (2012), Evaluation of runoff peak rate runoff and sediment yield under various rainfall intensities and patterns using WEPP watershed model, Journal of Korea Water Resources Association, Vol. 45, No. 8, pp. 795-804. https://doi.org/10.3741/JKWRA.2012.45.8.795
  5. Feingold, G. and Zev, L. (1986), The lognormal fit to raindrop spectra from frontal convective clouds in Israel, Journal of climate and applied meteorology, Vol. 25, No. 10, pp. 1346-1363. https://doi.org/10.1175/1520-0450(1986)025<1346:TLFTRS>2.0.CO;2
  6. Jung, K. H., Kim, W. T., Hur, S. O., Ha, S. K., Jung, P. K. and Jung, Y. S. (2004), USLE/RUSLE factors for national scale soil loss estimation based on the digital detailed soil map, Korean Journal of Soil Science and Fertilizer, Vol. 37, No. 4, pp. 199-206.
  7. Korea meteorological administration (2017), Annual climatological report 2017, Publication No. 11-1360000-000016-10 (In Korean).
  8. Kim, S. W. (2019), Estimation of topsoil erosion considering physical characteristics of rainfall intensity and overland flow (Doctoral dissertation), Chungnam national university, Daejeon, Korea.
  9. Kim, S. W., Jeong, A. C., Lee, G. H. and Jung, K. S. (2018), Estimation of the kinetic energy of raindrops for hourly rainfall considering the rainfall particle distribution, Journal of the Korean Geoenvironmental Society, Vol. 19, No. 12, pp. 15-23. https://doi.org/10.14481/JKGES.2018.19.12.15
  10. Kum, D. H., Ryu, J. C., Kang, H. W., Jang, C. H., Shin, M. H., Shin, D. S. and Lim, K. J. (2011), Comparison of annual soil loss using USLE and hourly soil erosion evaluation system, Korean Journal of Soil Science and Fertilizer, Vol. 44, No. 6, pp. 991-997. https://doi.org/10.7745/KJSSF.2011.44.6.991
  11. Laws, J. O. and Parsons, D. A. (1943), The relation of raindropsize to intensity, Transactions of American Geophysical Union, Vol. 24, pp. 452-460. https://doi.org/10.1029/TR024i002p00452
  12. Lee, J. H. (2018), Derivation of regional annual mean rainfall erosivity for predicting topsoil erosion in Korea, Journal of the Korea Water Resources Association, Vol. 51, No. 9, pp. 783-793. https://doi.org/10.3741/JKWRA.2018.51.9.783
  13. Lee, G., Yu, W. and Jung, K. (2013), Catchment-scale soil erosion and sediment yield simulation using a spatially distributed erosion model, Environmental earth sciences, Vol. 70, No. 1, pp. 33-47. https://doi.org/10.1007/s12665-012-2101-5
  14. Meyer, L. D. and Wischmeier, W. H. (1969), Mathematical simulation of the process of soil erosion by water, Transactions of the ASAE, Vol. 12, No. 6, pp. 754-0758. https://doi.org/10.13031/2013.38945
  15. Morgan, R. P. C., Quinton, J. N., Smith, R. E., Govers, G., Poesen, J. W. A., Auerswald, K., Chisci, G., Torri, D. and Styczen, M. E. (1998), The European soil erosion model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms, Vol. 23, pp. 527-544. https://doi.org/10.1002/(SICI)1096-9837(199806)23:6<527::AID-ESP868>3.0.CO;2-5
  16. Mualem, Y. and Assouline, S. (1986), Mathematical model for rain drop distribution and rainfall kinetic energy, Transactions of the American Society of Agricultural Engineers, Vol. 29, No. 2, pp. 494-500. https://doi.org/10.13031/2013.30179
  17. Park, S. W., Mitchell, J. K. and Bubenzern, G. D. (1983), Rainfall characteristics and their relation to splash erosion, Transactions of the ASAE, Vol. 26, No. 3, pp. 795-804. https://doi.org/10.13031/2013.34026
  18. Park, C. W., Sonn, Y. K., Hyun, B. K., Song, K. C., Chun, H. C., Moon, Y. H. and Yun, S. G. (2011), The redetermination of USLE rainfall erosion factor for estimation of soil loss at Korea, Korean Journal of Soil Science and Fertilizer, Vol. 44, No. 6, pp. 977-982. https://doi.org/10.7745/KJSSF.2011.44.6.977
  19. Quimpo, R. G. and Brohi, A. B. (1986), On the frequency distribution of raindrop sizes, Journal of Irrigation and Drainage Engineering, Vol. 112, No. 2, pp. 119-129. https://doi.org/10.1061/(ASCE)0733-9437(1986)112:2(119)
  20. Tachikawa, Y., Nagatani, G. and Takara, K. (2004), Develpment of stage-discharge relationship equation incorporating saturatedunsaturated flow mechanism, Annual Journal of Hydraulic Engineering (JSCE), Vol. 48, pp. 7-12. https://doi.org/10.2208/prohe.48.7
  21. Torri, D., Sfalanga, M. and Del Sette, M. (1987), Splash detachment: runoff depth and soil cohesion, Catena, Vol. 14, pp. 149-155. https://doi.org/10.1016/S0341-8162(87)80013-9
  22. Ulbrich, C. W. (1983), Natural variations in the analytical form of the raindrop size distribution, Journal of Climate and Applied Meteorology, Vol. 22, No. 10, pp. 1764-1775. https://doi.org/10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2
  23. Villermaux, E. and Bossa, B. (2009), Single-drop fragmentation determines size distribution of raindrops, Nature physics, Vol. 5, pp. 697-702. https://doi.org/10.1038/nphys1340
  24. Williams, J. R. and Berndt, H. D. (1972), Sediment yield computed with universal equation, Journal of the Hydraulics Division, ASCE, Vol. 98, No. 12, pp. 2087-2098. https://doi.org/10.1061/JYCEAJ.0003498
  25. Willis, P. T. (1984), Functional fits to some observed drop size distributions and parameterization of rain, Journal of the atmospheric sciences, Vol. 41, No. 9, pp. 1648-1661. https://doi.org/10.1175/1520-0469(1984)041<1648:FFTSOD>2.0.CO;2
  26. Yang C. T. (1973), Incipient motion and sediment transport, Journal of the hydraulics division, Vol. 99, pp. 1679-1704. https://doi.org/10.1061/JYCEAJ.0003766
  27. Zingg, A. W. (1940), Degree and length of land slope as it affects soil loss in run-off, Agricultural engineering, Vol. 21, pp. 59-64.

Cited by

  1. Analysis of Net Erosion Using a Physics-Based Erosion Model for the Doam Dam Basin in Korea vol.13, pp.19, 2020, https://doi.org/10.3390/w13192663