DOI QR코드

DOI QR Code

Structural Characteristics of Marine Diesel Engine Soot by Source

선박용 디젤 엔진 수트의 발생원에 따른 구조적 특성 연구

  • Kang, Jun (Division of Marine Engineering, Korea Maritime University) ;
  • Choi, Jae-Hyuk (Division of Marine Engineering System, Korea Maritime University) ;
  • Yoon, Sung Hwan (Division of Marine Engineering System, Korea Maritime University) ;
  • Kim, Soo-yang (Korean Register) ;
  • Kim, Junsoo (Korea Institute of Maritime and Fisheries Technology) ;
  • Jang, Ha-Seek (Division of Marine Engineering, Korea Maritime University) ;
  • Lee, Won-Ju (Division of Marine Engineering, Korea Maritime University)
  • 강준 (한국해양대학교 기관공학부) ;
  • 최재혁 (한국해양대학교 기관시스템공학부) ;
  • 윤성환 (한국해양대학교 기관시스템공학부) ;
  • 김수양 (한국선급) ;
  • 김준수 (한국해양수산연수원) ;
  • 장하식 (한국해양대학교 기관공학부) ;
  • 이원주 (한국해양대학교 기관공학부)
  • Received : 2020.01.08
  • Accepted : 2020.02.25
  • Published : 2020.02.28

Abstract

In this study, we analyzed the structural characteristics of soot, which is one of the anticipated regulatory substances of the IMO, and used a novel classification method to distinguish between exhaust soot and engine soot in marine engines. As an extension of a recent study on exhaust soot recycling, annealing was performed at 2,000 ℃ on engine soot to determine whether it could be recycled. Soot samples before and after annealing were analyzed using HR-TEM and Raman spectroscopy. The HR-TEM results showed that exhaust soot and engine soot had similar nanostructures; the exhaust soot has a spherical primary particle with a chain-like structure, whereas engine soot particles have amorphous structures. The Raman spectroscopy showed a D-peak and a G-peak for both exhaust soot and engine soot. However, the G/D ratio indicated that the value of exhaust soot was relatively higher than that of engine soot, which implies that the exhaust soot has a more graphitized structure. The analysis of annealed engine soot confirmed that graphitization proceeded without any problems, similar to the exhaust soot. This confirmed that both exhaust soot and engine soot generated by marine diesel engines could be recycled as graphite materials.

본 연구에서는 IMO의 향후 예상 규제 물질 중 하나인 수트를 선박용 엔진을 대상으로는 최초로 배기 수트와 엔진 수트로 구분하여 구조적 특성의 비교 분석을 시도하였다. 그리고 최근 발표되고 있는 배기 수트 재활용 연구의 연장선상에서 엔진 수트의 재활용 가능성 여부를 확인하기 위하여 2,000℃로 열처리를 시행하였고, 열처리 전·후의 수트를 고분해능 전자현미경과 라만분광법을 통해 분석하였다. 전자 현미경을 통한 분석 결과, 배기 수트와 엔진 수트는 유사한 형태의 나노 구조를 가지고 있으나, 배기 수트는 구형의 1차 입자가 체인형 결합구조를 가지고 있었고, 엔진 수트는 배기 수트에 비해 무정형한 구조가 확인되었다. 라만분광법 분석 결과, 배기 수트와 엔진 수트 모두 D peak(1,350 cm-1)와 G peak(1,580 ~ 1,600 cm-1)가 확인되었다. 다만, G/D ratio는 엔진 수트에 비해 배기 수트가 상대적으로 높게 나타나며, 이는 배기 수트가 더 흑연화 된 구조를 나타냄을 의미한다. 열처리 후의 분석 결과, 엔진 수트도 배기 수트와 유사하게 흑연화가 문제없이 진행됨을 확인하였고, 이를 통해 선박용 디젤엔진에서 발생하는 배기 수트와 엔진 수트 모두 흑연재료로 재활용이 가능함을 확인하였다.

Keywords

References

  1. Bond, T. C., S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G. Flanner, S. Ghan, B. Karcher, D. Koch, S. Kinne, Y. Kondo, P. K. Quinn, M. C. Sarofim, M. G. Schultz, M. Schulz, C. Venkataraman, H. Zhang, S. Zhang, N. Bellouin, S. K. Guttikunda, P. K. Hopke, M. Z. Jacobson, J. W. Kaiser, Z. Klimont, U. Lohmann, J. P. Schwarz, D. Shindell, T. Storelvmo, S. G. Warren, and C. S. Zende(2013), Bounding the role of black carbon in the climate system: A scientific assessment, Journal of Geophisical Research: Atmospheres, Vol. 118, pp. 5380-5552. https://doi.org/10.1002/jgrd.50171
  2. Clague, A. D. H., J. B. Donnet, T. K. Wang, and J. C. M. Peng(1999), A comparison of diesel engine soot with carbon black, Carbon, Vol. 37, No. 10, pp. 1553-1565. https://doi.org/10.1016/S0008-6223(99)00035-4
  3. Ess, M. N., H. Bladt, W. Muhlbauer, S. I. Seher, C. Zollner, S. Lorenz, D. Bruggenmann, U. Nieken, N. P. Ivleva, and R. Niessner(2016), Reactivity and structure of soot generated at varying biofuel content and engine operating parameters, Combustion and Flame, Vol. 163, pp. 157-169. https://doi.org/10.1016/j.combustflame.2015.09.016
  4. Eyring, V., H. W. Kohler, J. Van Aardenne, and A. Lauer(2005), Emissions from international shipping:1.The last 50 years, Journal of Geophysical Research, Vol. 110, Issue. D17.
  5. Eyring, V., I. S. A. Isaksen, T. Berntsen, W. J. Collins, J. J. Corbett, O. Endresen, R. G. Grainger, J. Moldanova, H. Schlager, and D. S. Stevenson(2010), Transport impacts on atmosphere and climate: shipping, Atmospheric Environment, Vol. 44, No. 37, pp. 4735-4771. https://doi.org/10.1016/j.atmosenv.2009.04.059
  6. Ferrari, A. C. and J. Robertson(2004), Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond, Pilosophical Transactions of the Royal Society A, Vol. 362, No. 1824, pp. 2477-2512. https://doi.org/10.1098/rsta.2004.1452
  7. Grieco, W. J., J. B. Howard, L. C. Rainey, and J. B. Vander(2000), Fullerenic carbon in combustion-generated soot, Carbon, Vol. 38, No. 4, pp. 597-614. https://doi.org/10.1016/S0008-6223(99)00149-9
  8. IMO MEPC. Strategic plan for the organization for the six-year period 2018 to 2023(2017), MEPC Resolution A.1110(30).
  9. Lee, H. C. and H. J. Lee(2017), Prevention of Pollution from Ships and MARPOL 73/78, Institute of Law Studies PUSAN NATIONAL UNIVERSITY, Vol. 58, No. 3, pp. 151-175.
  10. Lee, H. M., C. L. Myung, and S. S. Park(2010), Experimental investigation of nano-sized particulate matter emission characteristics under engine operating conditions from common rail diesel engine, Journal of the Korean Society of Marine Engineering, Vol. 34, No. 4, pp. 508-514. https://doi.org/10.5916/jkosme.2010.34.4.508
  11. Lee, W. J., H. V. Kim, J. H. Choi, G. Panomsuwan, Y. C. Lee, B. S. Rho, and J. Kang(2018a), Recycling waste soot from merchant ships to produce anode materials for rechargeable lithium-ion batteries, Scientific Reports, 8, 5601 https://doi.org/10.1038/s41598-018-23945-8
  12. Lee, W. J., S. H. Jang, S. Y. Kim, M. K. Kang, K. W. Chun, K. H. Cho, S. H. Yoon, and J. H. Choi(2016), Experimental study on structure characteristics of particulate matter emitted from ship at various sampling conditions, Journal of the Korean Society of Marine Environment and Safety, Vol. 22, No. 5, pp. 547-553. https://doi.org/10.7837/kosomes.2016.22.5.547
  13. Lee, W. J., S. H. Park, S. H. Jang, H. J. Kim, S. K. Choi, K. W. Cho, I. S. Cho, S. M. Lee, and J. H. Choi(2018b), Carbon nanostructure od diesel soot particles emitted from 2 and 4 stroke marine engines burning different fuels, Journal of Nanoscience and Nanotechnology, Vol. 18, No. 3, pp. 2128-2131. https://doi.org/10.1166/jnn.2018.14963
  14. Pierre, L. and C. Michel(1984), Caracterisation de materiaux carbones par microspectrometrie raman, Carbon, Vol. 22, No. 4-5, pp. 375-385. https://doi.org/10.1016/0008-6223(84)90009-5
  15. Sharma, V., D. Uy, A. Gangopadhyay, A. O'Neill, W. A. Paxton, A. Sammut, M. A. Ford, and P. B. Aswath(2016), Structure and chemistry of crankcase and exhaust soot extracted from diesel engines, Carbon, Vol. 103, pp. 327-338. https://doi.org/10.1016/j.carbon.2016.03.024
  16. Vander Wal, R. L. and A. J. Tomasek(2004), Soot nanostructure: Dependence upon synthesis conditions, Combustion and Flame, Vol. 136, No. 1-2, pp. 129-140. https://doi.org/10.1016/j.combustflame.2003.09.008