DOI QR코드

DOI QR Code

Analysis and Compensation of Time Synchronization Error on SAR Image

시각 동기화 오차가 SAR 영상에 미치는 영향 분석 및 보상

  • Lee, Soojeong (Department of Mechanical and Aerospace Engineering/ASRI, Seoul National University) ;
  • Park, Woo Jung (Department of Mechanical and Aerospace Engineering/ASRI, Seoul National University) ;
  • Park, Chan Gook (Department of Mechanical and Aerospace Engineering/ASRI, Seoul National University) ;
  • Song, Jong-Hwa (Avionics Radar Team, Hanwha Systems) ;
  • Bae, Chang-Sik (Avionics Radar Team, Hanwha Systems)
  • Received : 2019.12.24
  • Accepted : 2020.03.24
  • Published : 2020.04.01

Abstract

In this paper, to improve Synthetic Aperture Radar (SAR) image quality, the effect of time synchronization error in the EGI/IMU (Embedded GPS/INS, Inertial Measurement Unit) integrated system is analyzed and state augmentation is applied to compensate it. EGI/IMU integrated system is widely used as a SAR motion measurement algorithm, which consists of EGI mounted to obtain the trajectory and IMU mounted on the SAR antenna. In an EGI/IMU integrated system, a time synchronization error occurs when the clocks of the sensors are not synchronized. Analysis of the effect of time synchronization error on navigation solutions and SAR images confirmed that the time synchronization error deteriorates SAR image quality. The state augmentation is applied to compensate for this and as a result, the SAR image quality does not decrease. In addition, by analyzing the performance and the observability of the time synchronization error according to the maneuver, it was confirmed that the time-variant maneuver such as rotational motion is necessary to estimate the time synchronization error adequately. In order to reduce the influence of the time synchronization error on the SAR image, the time synchronization error must be compensated by performing maneuver changing over time such as a rotation before SAR operation.

본 논문에서는 Synthetic Aperture Radar (SAR, 합성개구레이다) 영상 품질을 향상시키기 위해 EGI/IMU (Embedded GPS/INS, Inertial Measurement Unit) 통합 항법 시스템에서 발생하는 시각 동기화 오차의 영향을 분석하고 이를 보상하기 위해 상태변수증강 기법을 적용한다. SAR 요동 측정 알고리즘으로 항체의 위치를 추적하기 위한 EGI와 추가적으로 안테나에 장착된 IMU를 결합하는 EGI/IMU 통합 항법 시스템이 많이 이용된다. 이와 같은 EGI/IMU 통합 항법 시스템에서 센서간의 시계가 동기화되지 않을 경우 시각 동기화 오차가 발생한다. 시각 동기화 오차가 항법 및 SAR 영상에 미치는 영향 분석을 통해 시각 동기화 오차가 SAR 영상 품질을 악화시키는 것을 확인하였다. 이를 보상하기 위해 상태변수증강 기법을 적용하고, 적용한 결과 SAR 영상 품질이 저하되지 않음을 확인하였다. 또한 기동에 따른 시각 동기화 오차 추정 성능과 가관측성을 분석하여 시각 동기화 오차를 효과적으로 추정하기 위해서는 회전 기동과 같은 시간에 따라 변화하는 기동이 필요함을 보였다. 따라서, SAR 영상에 미치는 시각 동기화 오차의 영향을 줄이기 위해서는 SAR 구간 전에 회전 기동 등 시간에 따라 변화하는 기동을 수행하여 시각 동기화 오차를 보상해 주어야 한다.

Keywords

References

  1. Moreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I., and Papathanassiou, K. P., "A Tutorial on Synthetic Aperture Radar," IEEE Geoscience and Remote Sensing Magazine, Vol. 1, No. 1, March 2013, pp. 6-43. https://doi.org/10.1109/MGRS.2013.2248301
  2. Carrara, W. G., Goodman, R. S., and Majewski, R. M., Spotlight Synthetic Aperture Radar: Signal Processing Algorithms, Norwood, London, 1995.
  3. Cheney, M., and Borden, B., Fundamentals of Radar Imaging, Philadelphia, 2009.
  4. Haslam, G. E., and Damini, A., "Specifying the Allowable Latencies in the Application of SAR Motion Corrections," in Proceeding of EUSAR '96, European Conference on Synthetic aperture radar, Koenigswinter, Germany, March 1996, pp. 26-28.
  5. Park, Y., Park, Y. B., Jung, J., Shin, H. S., and Park, C. G, "Novel Motion Sensing Algorithm for Improving SAR Imaging by Parametric Error Modeling," International Journal of Aeronautical and Space Sciences, Vol. 20, No. 3, September 2019, pp. 761-767. https://doi.org/10.1007/s42405-019-00156-7
  6. Park, W. J., Park, Y., Lee, S., Park, C. G., Song, J., and Bae, C. S., "Motion Sensing Algorithm for SAR Image Using Pre-Parametric Error Modeling," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 47, No. 8, 2019, pp. 566-573. https://doi.org/10.5139/JKSAS.2019.47.8.566
  7. Lee, H. K., Lee, J. G., and Jee, G., "Calibration of Measurement Delay in Global Positioning System/Strapdown Inertial Navigation System," Journal of Guidance, Control, and Dynamics, Vol. 25, No. 2, 2002, pp. 240-247. https://doi.org/10.2514/2.4904
  8. Li, J., Jia, L., and Liu, G., "Multisensor Time Synchronization Error Modeling and Compensation Method for Distributed POS," IEEE Transactions on Instrumentation and Measurement, Vol. 65, No. 11, November 2016, pp. 2637-2645. https://doi.org/10.1109/TIM.2016.2598020
  9. Bar-Itzhack, I. Y., and Vitek, Y., "The Enigma of False Bias Detection in a Strapdown System During Transfer Alignment," Journal of Guidance, Control, and Dynamics, Vol. 8, No. 2, 1985, pp. 175-180. https://doi.org/10.2514/3.19956
  10. Ding, W., Wang, J., Li, Y., Mumformd, P., and Rizos, C., "Time Synchronization Error and Calibration in Integrated GPS/INS Systems," ETRI journal, Vol. 30, No. 1, February 2008, pp. 59-67. https://doi.org/10.4218/etrij.08.0106.0306
  11. Li, B., Rizos, C., Lee, H. K., and Lee, H. K., "A GPS-slaved Time Synchronization System for Hybrid Navigation," GPS solutions, Vol. 10, No. 3, 2006, pp. 207-217. https://doi.org/10.1007/s10291-006-0022-z
  12. Skog, I., and Handel, P., "Time Synchronization Errors in Loosely Coupled GPS-aided Inertial Navigation Systems," IEEE Transactions on Intelligent Transportation Systems, Vol. 12, No. 4, December 2011, pp. 1014-1023. https://doi.org/10.1109/TITS.2011.2126569
  13. Ju, H., Cho, S. Y., and Park, C. G., "The Effectiveness of Acceleration Matching According to the Sensor Performance in Shipboard Rapid Transfer Alignment," The Journal of Navigation, Vol. 73, No. 1, January 2020, pp. 1-15. https://doi.org/10.1017/S037346331900050X
  14. Joon, L., and Lim, Y. C., "Transfer Alignment Considering Measurement Time Delay and Ship Body Flexure," Journal of Mechanical Science and Technology, Vol. 23, No. 1, 2009, pp. 195-203. https://doi.org/10.1007/s12206-008-0821-y
  15. Rhee, I., Abdel-Hafez, M. F., and Speyer, J. L., "Observability of an Integrated GPS/INS During Maneuvers," IEEE Transactions of Aerospace and Electric Systems, Vol. 40, No. 2, April 2004, pp. 526-535. https://doi.org/10.1109/TAES.2004.1310002
  16. Goshen-Meskin, D., and Bar-Itzhack, I. Y., "Observability Analysis of Piece-Wise Constant Systems. I. Theory," IEEE Transactions on Aerospace and Electronic Systems, Vol. 28, No. 4, October 1992, pp. 1056-1067. https://doi.org/10.1109/7.165367
  17. Goshen-Meskin, D., and Bar-Itzhack, I. Y., "Observability Analysis of Piece-Wise Constant Systems. II. Application to Inertial Navigation In-flight Alignment (Military Applications)," IEEE Transactions on Aerospace and Electronic Systems, Vol. 28, No. 4, October 1992, pp. 1068-1075. https://doi.org/10.1109/7.165368
  18. Bar-Itzhack, I. Y., and Berman, N., "Control Theoretic Approach to Inertial Navigation Systems," Journal of Guidance, Control, and Dynamics, Vol. 11, No. 3, 1988, pp. 237-245. https://doi.org/10.2514/3.20299
  19. Ham, F. M., and Brown, R. G., "Observability, Eigenvalues, and Kalman Filtering," IEEE Transactions on Aerospace and Electronic Systems, Vol. 19, No. 2, March 1983, pp. 269-273.