DOI QR코드

DOI QR Code

Mitochondrial Genome Sequence of Echinostoma revolutum from Red-Crowned Crane (Grus japonensis)

  • Ran, Rongkun (Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University) ;
  • Zhao, Qi (Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University) ;
  • Abuzeid, Asmaa M.I. (Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University) ;
  • Huang, Yue (Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University) ;
  • Liu, Yunqiu (Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University) ;
  • Sun, Yongxiang (Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University) ;
  • He, Long (Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University) ;
  • Li, Xiu (Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University) ;
  • Liu, Jumei (Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University) ;
  • Li, Guoqing (Guangdong Provincial Zoonosis Prevention and Control Key Laboratory, College of Veterinary Medicine, South China Agricultural University)
  • Received : 2019.10.03
  • Accepted : 2020.02.10
  • Published : 2020.02.29

Abstract

Echinostoma revolutum is a zoonotic food-borne intestinal trematode that can cause intestinal bleeding, enteritis, and diarrhea in human and birds. To identify a suspected E. revolutum trematode from a red-crowned crane (Grus japonensis) and to reveal the genetic characteristics of its mitochondrial (mt) genome, the internal transcribed spacer (ITS) and complete mt genome sequence of this trematode were amplified. The results identified the trematode as E. revolutum. Its entire mt genome sequence was 15,714 bp in length, including 12 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and one non-coding region (NCR), with 61.73% A+T base content and a significant AT preference. The length of the 22 tRNA genes ranged from 59 bp to 70 bp, and their secondary structure showed the typical cloverleaf and D-loop structure. The length of the large subunit of rRNA (rrnL) and the small subunit of rRNA (rrnS) gene was 1,011 bp and 742 bp, respectively. Phylogenetic trees showed that E. revolutum and E. miyagawai clustered together, belonging to Echinostomatidae with Hypoderaeum conoideum. This study may enrich the mitochondrial gene database of Echinostoma trematodes and provide valuable data for studying the molecular identification and phylogeny of some digenean trematodes.

Keywords

References

  1. Chai JY. Echinostomes in humans. In Fried B, Toledo R eds, The Biology of Echinostomes: From the Molecule to the Community. New York, USA. Springer. 2009.
  2. Chai JY. Intestinal flukes. In Murrell KD, Fried B eds, Food-Borne Parasitic Zoonoses: Fish and Plant-Borne Parasites, World Class Parasites, Vol. 11. New York, USA. Springer. 2007, pp 53-115.
  3. Chai JY, Shin EH, Lee SH, Rim HJ. Foodborne intestinal flukes in Southeast Asia. Korean J Parasitol 2009; 47: 69-102. https://doi.org/10.3347/kjp.2009.47.1.69
  4. Sohn WM, Chai JY, Yong TS, Eom KS, Yoon CH, Sinuon M, Socheat D, Lee SH. Echinostoma revolutum, infection in children, Pursat Province, Cambodia. Emerg Inf Dis 2011; 17: 117-119. https://doi.org/10.3201/eid1701.100920
  5. Fried B, Graczyk TK. Recent advances in the biology of Echinostoma species in the "revolutum" group. Adv Parasitol 2004; 58: 139-145. https://doi.org/10.1016/S0065-308X(04)58003-X
  6. Kostadinova A, Gibson DI, Biserkov V, Chipev N. Re-validation of Echinostoma miyagawai Ishii, 1932 (Digenea: Echinostomatidae) on the basis of the experimental completion of its life-cycle. Syst Parasitol 2000; 45: 81-92. https://doi.org/10.1023/A:1006241610689
  7. Yang F, Zhang P, Shi XL, Li KX, Wang MW, Fu YQ, Yan XX, Hang JX, Li GQ. New record of Ascaridia nymphii (Secernentea: Ascaridiidae) from macaw parrot, Ara chloroptera, in China. Parasitol Int 2018; 67: 309-312. https://doi.org/10.1016/j.parint.2018.01.003
  8. Saijuntha W, Sithithaworn P, Duenngai K. Genetic variation and relationships of four species of medically important echinostomes (Trematoda: Echinostomatidae) in South-East Asia. Infect Genet Evol 2011; 11: 375-381. https://doi.org/10.1016/j.meegid.2010.11.009
  9. Okimoto R, Macfarlane JL, Wolstenholme DR. Evidence for the frequent use of TTG as the translation initiation codon of mitochondrial protein genes in the nematodes, Ascaris suum and Caenorhabditis elegans. Nucl Acids Res 1990; 18: 6-8.
  10. Boore JL. Animal mitochondrial genomes. Nucl Acids Res 1999; 27: 1767-1780. https://doi.org/10.1093/nar/27.8.1767
  11. Jex AR, Hu M, Littlewood DT, Waeschenbach A, Gasser RB. Using 454 technology for long-PCR based sequencing of the complete mitochondrial genome from single Haemonchus contortus (Nematoda). BMC Genomics 2008; 9: 11-13. https://doi.org/10.1186/1471-2164-9-11
  12. Na L, Gao JF, Liu GH, Fu X, Su X, Yue DM, Gao Y, Zhang Y, Wang CR. The complete mitochondrial genome of Metorchis orientalis (Trematoda: Opisthorchiidae): comparison with other closely related species and phylogenetic implications. Infect Genet Evol 2016; 39: 45-50. https://doi.org/10.1016/j.meegid.2016.01.010
  13. Ma J, He JJ, Liu GH, Blair D, Liu LZ, Liu Y, Zhu XQ. Mitochondrial genome of Ogmocotyle sikae and implications for phylogenetic studies of the Notocotylidae trematodes. Infect Genet Evol 2016; 37: 208-214. https://doi.org/10.1016/j.meegid.2015.11.018
  14. Liu ZX, Zhang Y, Liu YT, Chang QC, Su X, Fu X, Yue DM, Gao Y, Wang CR. Complete mitochondrial genome of Echinostoma hortense (Digenea: Echinostomatidae). Korean J Parasitol 2016; 54: 173-179. https://doi.org/10.3347/kjp.2016.54.2.173
  15. Shi XL, Fu YQ, Abdullahi AY, Wang MW, Yang F, Yu XG, Pan WD, Yan XX, Hang JX, Zhang P, Li GQ. The mitochondrial genome of Ancylostoma tubaeforme from cats in China. J Helminthol 2018; 92: 22-33. https://doi.org/10.1017/S0022149X17000116
  16. Zhang P, Ran RK, Abdullahi AY, Shi XL, Huang Y, Sun YX, Liu YQ, Yan XX, Hang JX, Fu YQ, Wang MW, Chen W, Li GQ. The mitochondrial genome of Dipetalonema gracile from squirrel monkey in China. J Helminthol 2018; 94: e1
  17. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003; 52: 696-704. https://doi.org/10.1080/10635150390235520
  18. Swofford DL. PAUP*: Phylogenetic Analysis Using Parsimony, version 4.0b10. Sinauer. Sunderland, Massachusetts, USA.2002.
  19. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28: 2731-2739. https://doi.org/10.1093/molbev/msr121
  20. Chen YY, Chen S, Kang J, Fang H, Dao H, Guo WZ, Lai CH, Lai MY, Fan JH, Fu LC. Evolving molecular epidemiological profile of human immunodeficiency virus 1 in the southwest border of China. PLoS One 2014; 9: e107578. https://doi.org/10.1371/journal.pone.0107578
  21. Le TH, Blair D, Mcmanus DP. Complete DNA sequence and gene organization of the mitochondrial genome of the liverfluke, Fasciola hepatica L. (Platyhelminthes; Trematoda). Parasitology 2001; 123: 609-621. https://doi.org/10.1017/S0031182001008733
  22. Le TH, Blair D, Agatsuma T, Humair PF, Campbell NJ, Iwagami M, Littlewood DT, Peacock B, Johnston DA, Bartley J, Rollinson D, Herniou EA, Zarlenga DS, McManus DP. Phylogenies inferred from mitochondrial gene orders - A cautionary tale from the parasitic flatworms. Mol Biol Evol 2001; 17: 1123-1125. https://doi.org/10.1093/oxfordjournals.molbev.a026393
  23. Le TH, Nguyen NTB, Nguyen KT, Doan HTT, Dung DT, Blair D. A complete mitochondrial genome from Echinochasmus japonicus supports the elevation of Echinochasminae Odhner, 1910 to family rank (Trematoda: Platyhelminthes). Infect Genet Evol 2016; 45: 369-377. https://doi.org/10.1016/j.meegid.2016.09.024
  24. Cai XQ, Liu GH, Song HQ, Wu CY, Zhou FC, Yan HK, Yuan ZG, Lin RQ, Zhu XQ. Sequences and gene organization of the mitochondrial genomes of the liver flukes Opisthorchis viverrini and Clonorchis sinensis (Trematoda). Parasitol Res 2012; 110: 235-243. https://doi.org/10.1007/s00436-011-2477-2
  25. Jia WZ, Yan HB, Ni XW, Lou ZZ, Li HM, Cao P, Cai XP. Advances in the study of helminth mitochondrial genomes and their associated applications. Chinese Sci Bul 2012; 57: 54-67. https://doi.org/10.1007/s11434-011-4748-9
  26. Jia WZ, Yan HB, Shi WG, Guo AJ, Zhan F. Research progress on complete mitochondrial genome sequences and their application for trematodes. Chinese J Vet Sci 2011; 31: 926-932.
  27. Ojala D, Montoya J, Attardi G. TRNA punctuation model of RNA processing in human mitochondria. Nature 1981; 290: 470-474. https://doi.org/10.1038/290470a0

Cited by

  1. Occurrence of echinostomatoids (Platyhelminthes: Digenea) in Great Cormorant (Phalacrocorax carbo) and Grey Heron (Ardea cinerea): first insights into the DNA barcodes from Lake Victoria, Tanzania vol.56, pp.3, 2020, https://doi.org/10.1080/15627020.2021.1958056
  2. The mitochondrial genome sequence analysis of Ophidascaris baylisi from the Burmese python (Python molurus bivittatus) vol.85, 2020, https://doi.org/10.1016/j.parint.2021.102434