References
- Y. Wu, B. Gu, J. W. Erisman, S. Reis, Y. Fang, X. Lu, and X. Zhang, PM2.5 pollution is substantially affected by ammonia emissions in china, Environ. Pollut., 218, 86-94 (2016). https://doi.org/10.1016/j.envpol.2016.08.027
- J. X. Warner, R. R. Dickerson, Z. Wei, L. L. Strow, Y. Wang, and Q. Liang, Increased atmospheric ammonia over the world's major agricultural areas detected from space, Geophys. Res. Lett., 44, 2875-2884 (2017). https://doi.org/10.1002/2016GL072305
-
P. Li, R. Zhang, N. Liu, and S. Royer, Efficiency of Cu and Pd substitution in Fe-based perovskites to promote
$N_2$ formation during$NH_3$ selective catalytic oxidation ($NH_2$ -SCO), Appl. Catal. B: Environ., 203, 174-188 (2017). https://doi.org/10.1016/j.apcatb.2016.10.021 - X. Zhang, H. Wang, Z. Wang, and Z. Qu, Adsorption and surface reaction pathway of NH3 selective catalytic oxidation over different Cu-Ce-Zr catalysts, Appl. Surf. Sci., 447, 40-48 (2018). https://doi.org/10.1016/j.apsusc.2018.03.220
-
C. M Hung, Synthesis, characterization and performance of CuO/
$La_2O_3$ composite catalyst for ammonia catalytic oxidation, Powder Technol., 196, 56-61 (2009). https://doi.org/10.1016/j.powtec.2009.07.001 -
Z. Wang, Z. Qu, X. Quan, Z. Li, H. Wang, and R. Fan, Selective catalytic oxidation of ammonia to nitrogen over CuO-
$CeO_2$ mixed oxide prepared by surfactant-templated method, Appl. Catal. B: Environ., 134-135, 153-166 (2013). https://doi.org/10.1016/j.apcatb.2013.01.029 -
R. Q. Long and R. T. Yang, Selective catalytic oxidation of ammonia to nitrogen over
$Fe_2O_3-TiO_2$ prepared with a Sol-Gel method, J. Catal., 207, 158-165 (2002). https://doi.org/10.1006/jcat.2002.3545 - N. I. Il'chenko and G. I. Golodets, Catalytic oxidation of ammonia, J. Catal., 39, 57-72 (1975). https://doi.org/10.1016/0021-9517(75)90282-1
- J. G. Amores, V. S. Escribano, G. Ramis, and G. Busca, An FT-IR study of ammonia adsorption and oxidation over anatase-supported metal oxide, Appl. Catal. B: Environ., 13, 45-58 (1997). https://doi.org/10.1016/S0926-3373(96)00092-6
-
S. M. Lee, H. H. Lee, and S. C. Hong, Influence of calcination temperature on Ce/
$TiO_2$ catalysis of selective catalytic oxidation of$NH_3$ to$N_2$ , Appl. Catal. B: Environ., 470, 189-198, (2014). https://doi.org/10.1016/j.apcata.2013.10.057 -
M. Jiang, B. Wang, Y. Yao, Z. Li, X. Ma, S. Qin, and Q. Sun, A comparative study of
$CeO_2-Al_2O_3$ support prepared with different methods and its application on$MoO_3/CeO_2-Al_2O_3$ catalyst for sulfur-resistant methanation, Appl. Surf. Sci., 285, 267-277 (2013). https://doi.org/10.1016/j.apsusc.2013.08.049 -
H. Wang, P. Ning, Q.L. Zhang, X. Liu, T.X. Zhang, J. Hu, and L. Y. Wang, Effect of different
$RuO_2$ contents on selective catalytic oxidation of ammonia over$RuO_2-Fe_2O_{26}$ catalysts, J. Fuel Chem. Tech., 47, 215-223 (2019). https://doi.org/10.1016/S1872-5813(19)30011-8 - H. Ma and W. F. Schneider, Structure- and temperature-dependence of Pt-catalyzed ammonia oxidation rates and selectivities, ACS Catal., 9, 2407-2414 (2019). https://doi.org/10.1021/acscatal.8b04251
-
F. Wang, G. He, B. Zhang, M. Chen, X. Chen, C. Zhang, and H. He, Insights into the activation effect of
$H_2$ pretreatment on Ag/$Al_2O_3$ catalyst for the selective oxidation of ammonia, ACS Catal., 9, 1437-1445 (2019). https://doi.org/10.1021/acscatal.8b03744 -
X. Cui, J. Zhou, Z. Ye, H. Chen, L. Li, M. Ruan, and J. Shi, Selective catalytic oxidation of ammonia to nitrogen over mesoporous CuO/
$RuO_2$ synthesized by co-nanocasting-replication method, J. Catal., 270, 310-317 (2010). https://doi.org/10.1016/j.jcat.2010.01.005 - D. P. Sobczyk, A. M. Jong, E. J. M. Hensen, and R. A. Santen, Activation of ammonia dissociation by oxygen on platinum sponge studied with positron emission profiling, J. Catal., 219, 156-166 (2003). https://doi.org/10.1016/S0021-9517(03)00191-X
-
Y. Li and J. N. Amor, Selective
$NH_3$ oxidation to$N_2$ in a wet stream, Appl. Catal. B: Environ., 13, 131-139 (1997). https://doi.org/10.1016/S0926-3373(96)00098-7 -
X. Cui, L. Chen, Y. Wang, H. Chen, W. Zhao, Y. Li, and J. Shi, Fabrication of hierarchically porous
$RuO_2$ -CuO/Al-$ZrO_3$ composite as highly efficient catalyst for ammonia-selective catalytic oxidation, ACS Catal., 4, 2195-2206 (2014). https://doi.org/10.1021/cs500421x -
G. Qi and R. T. Yang, Performance and kinetics study for low-temperature SCR of NO with
$NH_3$ over MnOx-$CeO_2$ catalyst, J. Catal., 217, 434-441 (2003). https://doi.org/10.1016/S0021-9517(03)00081-2 -
C. L. Wang, W. S. Hwangm, H. L. Chu, H. J. Lin, H. H. Ko, and M. C. Wang, Kinetics of anatase transition to rutile
$TiO_2$ from titanium dioxide precursor powders synthesized by a sol-gel process, Ceram. INT., 42, 13136-13143 (2016). https://doi.org/10.1016/j.ceramint.2016.05.101 -
N. Aranda-Perez, M. P. Ruiz, J. Echave, and J. Faria, Enhanced activity and stability of Ru-
$TiO_2$ rutile for liquid phase ketonization, Appl. Catal. A: Gen., 531, 106-118 (2017). https://doi.org/10.1016/j.apcata.2016.10.025 - J. M. G. Carballo, E. Finocchio, S. Garcia, S. Rojas, M. Ojeda, G. Busca, and J. L. G. Fierro, Support effects on the structure and performance of ruthenium catalysts for the Fischer-Tropsch synthesis, Catal. Sci. Technol., 1, 1013-1023 (2011). https://doi.org/10.1039/c1cy00136a
- L. Li, L. Qu, J. Cheng, J. Li, and Z. Hao, Oxidation of nitric oxide to nitrogen dioxide over Ru catalysts, Appl. Catal. B: Environ., 88, 224-231 (2009). https://doi.org/10.1016/j.apcatb.2008.09.032
- D. B. Ruan, P. T. Liu, Y. C. Chiu, K. Z. Kan, M. C. Yu, T. C. Chien, Y. H. Chen, P. Y. Kuo, and S. M. Sze, Investigation of low operation voltage InZnSnO thin-film transistors with different high-k gate dielectric by physical vapor deposition, Thin Solid Films, 660, 885-890 (2018). https://doi.org/10.1016/j.tsf.2018.02.036