References
- T. W. Kim and J. H. Kim, Kinetics and thermodynamics of paclitaxel extraction from plant cell culture, Korean J. Chem. Eng., 33, 3175-3183 (2016). https://doi.org/10.1007/s11814-016-0187-2
- Y. S. Kim and J. H. Kim, Isotherm, kinetic and thermodynamic studies on the adsorption of paclitaxel onto sylopute, J. Chem. Thermodyn., 130, 104-113 (2019). https://doi.org/10.1016/j.jct.2018.10.005
- S. H. Lee and J. H. Kim, Kinetic and thermodynamic characteristics of microwave-assisted extraction for the recovery of paclitaxel from Taxus chinensis, Process Biochem., 76, 187-193 (2019). https://doi.org/10.1016/j.procbio.2018.11.010
- H. J. Kang and J. H. Kim, Adsorption kinetics, mechanism isotherm and thermodynamic analysis of paclitaxel from extracts of Taxus chinensis cell cultures onto sylopute, Biotechnol. Bioproc. Eng., 24, 513-521 (2019). https://doi.org/10.1007/s12257-019-0001-1
- G. Y. Park, G. J. Kim, and J. H. Kim, Effect of tar compounds on the purification efficiency of paclitaxel from Taxus chinensis, J. Ind. Eng. Chem., 21, 151-154 (2015). https://doi.org/10.1016/j.jiec.2014.03.042
- J. H. Kim, C. B. Lim, I. S. Kang, S. S. Hong, and H. S. Lee, The use of a decanter for harvesting biomass from plant cell cultures, Korean J. Biotechnol. Bioeng., 16, 337-341 (2000).
- J. Y. Lee and J. H. Kim, Effect of water content of organic solvent on microwave-assisted extraction efficiency of paclitaxel from plant cell culture, Korean J. Chem. Eng., 28, 1561-1565 (2011). https://doi.org/10.1007/s11814-011-0012-x
- J. E. Hyun and J. H. Kim, Microwave-assisted extraction of paclitaxel from plant cell cultures, Korean J. Biotechnol. Bioeng., 23, 281-284 (2008).
- J. H. Kim, H. B. Park, U. S. Gi, I. S. Kang, H. K. Choi, and S. S. Hong, Removal of residual solvents in paclitaxel by supercritical carbon dioxide, Korean J. Biotechnol. Bioeng., 16, 233-236 (2001).
- U. S. Gi, B. Min, J. H. Lee, and J. H. Kim, Preparation and characterization of paclitaxel from plant cell culture, Korean J. Chem. Eng., 21, 816-820 (2004). https://doi.org/10.1007/BF02705526
- J. Y. Lee and J. H. Kim, Microwave-assisted drying of paclitaxel for removal of residual solvents, Process Biochem., 48, 545-550 (2013). https://doi.org/10.1016/j.procbio.2013.01.015
- Y. Li, Y. Lei, L. B. Zhang, J. H. Peng, and C. L. Li, Microwave drying characteristics and kinetics of ilmenite, Trans. Nonferrous Met. Soc. China, 21, 202-207 (2011). https://doi.org/10.1016/S1003-6326(11)60700-0
- H. S. Kim, Y. B. Chae, S. B. Jung, and Y. N. Jang, Drying of by-product gypsum by microwave heating, J. Miner. Soc. Korea, 21, 193-200 (2008).
- A. S. Kassem, A. Z. Shokr, A. R. EI-Mahdy, A. M. Aboukarima, and E. Y. Hamed, Comparison of drying characteristics of Thompson seedless grapes using combined microwave oven and hot air drying, J. Saudi Soc. Agr. Sci., 10, 33-40 (2011). https://doi.org/10.1016/j.jssas.2010.05.001
- Y. C. Cheung and J. Y. Wu, Kinetic models and process parameters for ultrasound-assisted extraction of water-soluble components and polysaccharides from a medicinal fungus, Biochem. Eng. J., 79, 214-220 (2013). https://doi.org/10.1016/j.bej.2013.08.009
- Y. C. Cheung, K. C. Siu, and J. Y. Wu, Kinetic models for ultrasound-assisted extraction of water-soluble components and polysaccharides from medicinal fungi, Food Bioprocess Technol., 6, 2659-2665 (2013). https://doi.org/10.1007/s11947-012-0929-z
- D. K. Saxena, S. K. Sharma, and S. S. Sambi, Kinetics and thermodynamics of gossypol extraction from defatted cottonseed meal by ethanol, Pol. J. Chem. Technol., 14, 29-34 (2012).
- H. S. Kim and J. H. Kim, Kinetics and thermodynamics of microwave-assisted drying of paclitaxel for removal of residual methylene chloride, Process Biochem., 56, 163-170 (2017). https://doi.org/10.1016/j.procbio.2017.02.007
- W. S. Jang and J. H. Kim, Characteristics and mechanism of microwave-assisted drying of amorphous paclitaxel for removal of residual solvent, Biotechnol. Bioproc. Eng., 24, 529-535 (2019). https://doi.org/10.1007/s12257-019-0076-8
- G. E. Page, Factors Influencing the Maximum Rate of Air Drying Shelled Corn in Thin-layers, MS Dissertation, Purdue University, West Lafayette, Indiana, USA (1949).
- G. M. White, T. C. Loewer, and I. J. Ross, Seed coat damage in thin layer drying of soybeans as affected by drying conditions, Trans. Am. Soc. Agric. Eng., 23, 224-227 (1978). https://doi.org/10.13031/2013.34559
- S. M. Henderson and S. Pabis, Grain drying theory I: Temperature effect on drying coefficient, J. Agr. Eng. Res., 6, 169-174 (1961).
- D. C. Chinweuba, R. N. Nwakuba, and V. C. Okafor, Thin layer drying modelling for some selected nigerian produce: A review, Am. J. Food. Sci. Nutr. Res., 3, 1-15 (2016).
- P. Saha and S. Chowdhury, Insight into Adsorption Thermodynamics, Mizutani Tadashi (ed.), ISBN: 978-953-307-544-0, InTech, Available from: https://www.intechopen.com/books/thermodynamics/insight-into-adsorption-thermodynamics (2011).
- L. Rakotondramasy-Rabesiaka, J. L. Havet, C. Porte, and H. Fauduet, Estimation of effective diffusion and transfer rate during the protopine extraction process from Fumaria officinalis L, Sep. Purif. Technol., 76, 126-131 (2010). https://doi.org/10.1016/j.seppur.2010.09.030
- A. J. Sahin, I. Dincer, B. S. Yilbas, and M. M. Hussain, Determination of drying times for regular multi-dimensional objects, Int. J. Heat Mass Transf., 45, 1757-1766 (2002). https://doi.org/10.1016/S0017-9310(01)00273-3
- H. Hata, S. Saeki, T. Kimura, Y. Sugahara, and K. Kuroda, Adsorption of taxol into ordered mesoporous silica with various pore diameters, Chem. Mater., 11, 1110-1119 (1999). https://doi.org/10.1021/cm981061n
- H. Darvishi, A. R. Asl, A. Asghari, G. Najafi, and H. A. Gazori, Mathematical modeling, moisture diffusion, energy consumption and efficiency of thin layer drying of potato slices, J. Food Process Technol., 4, 1-6 (2013).
- J. Crank, The Mathematics of Diffusion, 2nd ed., 89-103, Clarendon Press, Oxford, UK (1975).
- I. Dincer and M. M. Hussain, Development of a new Bi-Di correlation for solids drying, Int. J. Heat Mass Transf., 45, 3065-3069 (2002). https://doi.org/10.1016/S0017-9310(02)00031-5
- B. E. Prasad and K. K. Pandey, Microwave drying of bamboo, Eur. J. Wood Prod., 70, 353-355 (2012). https://doi.org/10.1007/s00107-010-0496-9
- I. A. Ozken, B. Akbudak, and N. Akbudak, Microwave drying characteristics of spinach, J. Food Eng., 78, 577-583 (2007). https://doi.org/10.1016/j.jfoodeng.2005.10.026
- H. Lee and C. S. Han, Drying and Quality Characteristics of Agricultural and Fishery Products Using Far Infrared Rays, MS Dissertation, Chungbuk National University, Cheongju, Korea (2009).
- R. P. F. Guine, M. J. Barroca, and V. Silva, Mathematical modeling, moisture diffusion, energy consumption and efficiency of thin layer drying of potato slices, Int. J. Food Prop., 16, 251-262 (2013). https://doi.org/10.1080/10942912.2011.551864
- G. P. Sharma and S. Prasad, Effective moisture diffusivity of garlic cloves undergoing microwave-convective drying, J. Food Eng., 65, 609-617 (2004). https://doi.org/10.1016/j.jfoodeng.2004.02.027
- E. Mirzaee, S. Rafiee, A. Keyhani, and Z. Emam-Djomeh, Determining of moisture diffusivity and activation energy in drying of apricots, Res. Agr. Eng., 55, 114-120 (2009). https://doi.org/10.17221/8/2009-RAE
- A. Sander, J. P. Kardum, and D. Skansi, Transport properties in drying solids, Chem. Biochem. Eng. Q., 15, 131-137 (2001).