DOI QR코드

DOI QR Code

Synthesis and Characterization of Polyurethane-silica Composite Foam

폴리우레탄-실리카 복합 발포체의 합성 및 물성에 관한 연구

  • Kang, Hyeon Seok (Department of Chemical Engineering, Kyonggi Unuversity) ;
  • Kim, Sang bum (Department of Chemical Engineering, Kyonggi Unuversity)
  • 강현석 (경기대학교 화학공학과) ;
  • 김상범 (경기대학교 화학공학과)
  • Received : 2019.12.24
  • Accepted : 2019.12.28
  • Published : 2020.02.10

Abstract

In this study, polyurethane-silica composite foams were synthesized to analyze thermal insulation characteristics and mechanical properties. In order to synthesize polyurethane-silica composite foams, polyester-silica composite polyols were first synthesized via a polymerization reaction with silica sol, dicarboxylic acid and glycol in monomer state. Physical properties of polyurethane-silica composite foams synthesized using the composite polyols were analyzed. From the thermal conductivity analysis, no significant differences among HPUF0, HPUF1, HPUF3 and HPUF5 were found. The compressive strength of polyurethane-silica composite foams increased as the silica content increased. The mechanical property of HPUF5 was also about 25% higher than that of HPUF0.

본 연구에서는 폴리우레탄-실리카 복합 발포체를 합성하여 복합 발포체의 단열 특성 및 기계적 물성을 분석하였다. 폴리우레탄-실리카 복합 발포체를 합성하기 위해 폴리에스테르-실리카 복합 폴리올을 합성하였다. 폴리에스테르-실리카 복합 폴리올은 실리카 졸과 모노머 상태의 다이카복실산(dicarboxylic acid), 글리콜(glycol)과의 중합 반응을 통해 합성하였다. 합성된 복합 폴리올을 이용하여 폴리우레탄-실리카 복합 발포체를 합성하여 물성을 분석하였다. 폴리우레탄-실리카 복합 발포체의 열전도도는 HPUF0, HPUF1, HPUF3, HPUF5 모두 큰 차이가 없는 것을 확인하였다. 압축강도는 실리카 함량이 증가함에 따라 HPUF0보다 증가하였으며 HPUF0보다 HPUF5가 약 25% 정도 기계적 물성이 향상되는 것을 확인하였다.

Keywords

References

  1. I. Javni, K. Song, J. Lin, and Z. S. Petrovic, Structure and propeties of flexible polyurethane foams with nano- and micro-fillers, J. Cell. Plast., 47(4), 357-372 (2011). https://doi.org/10.1177/0021955X11398115
  2. Y. C. Tu, P. Kiatsimkul, G. Suppes, and F. H. Hsieh, Physical properties of water blown rigid polyurethane foams from vegetable oil based polyols, J. Appl. Polym. Sci., 105, 453-459 (2007). https://doi.org/10.1002/app.26060
  3. C. Yang, Z. H. Zhuang, and Z. G. Yang, Pulverized polyurethane foam particles reinforced rigid polyurethane foam and phenolic foam, J. Appl. Polym. Sci., 131(1), 1-7 (2014).
  4. K. N. Kang and M. J. Park, Study on the major technology of zero energy architecture technique in residential building, Architectural Institute of Korea, 37(2), 480-483 (2017).
  5. Y. Duan, S. C. Jana, A. M. Reinsel, B. Lama, and M. P. Espe, Surface modification and reinforcement of silica aerogels using polyhedral oligomeric silsesquioxanes, J. Am. Chem. Soc., 28, 15362-15371 (2012).
  6. T. Y. Wei, T. F. Chang, and S. Y. Lu, Preparation of monolithic silica aerogel of low thermal conductivity by ambient pressure drying, J. Am. Ceram. Soc., 90(7), 2003-2007 (2007). https://doi.org/10.1111/j.1551-2916.2007.01671.x
  7. A. Rigacci, J. C. Marechal, M. Repoux, M. Moreno, and P. Achard, Preparation of polyurethae-based aerogels and xerogels for thermal superinsulation. J. Non-Cryst. Solids, 350, 372-378 (2004) https://doi.org/10.1016/j.jnoncrysol.2004.06.049
  8. N. Nazeran and J. Moghaddas, Synthesis and characterization of silica aerogel reinforced rigid polyurethane foam for thermal insulation application, J. Non-Cryst. Solids, 461, 1-11 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.01.037
  9. C. Zhao, Y. Yan, Z. Hu, L. Li, and X. Fan, Preparation and characterization of granular silica aerogel/polyisocyanurate rigid foam composites, Constr. Build. Mater., 93, 309-316 (2015). https://doi.org/10.1016/j.conbuildmat.2015.05.129
  10. M. M. A. Nikje and Z. M. Tehrani, Polyurethane rigid foams reinforced by doubly modified nanosilica, J. Cell. Plast., 46, 159-172 (2010) https://doi.org/10.1177/0021955X09350526
  11. M. M. A. Nikje and Z. M. Tehrani, Novel modified nanosilica based on synthesized dipodal silane and its effects on the physical properties of rigid polyurethane foams, Des. Monomers Polym., 13, 249-260 (2010). https://doi.org/10.1163/138577210X12634696333631
  12. L. Verdolotti, M. Lavorgna, R. Lamanna, E. D. Maio, and S. Iannace, Polyurethane silica hybrid foam by sol gel approach: Chemical and functional properties, Polymer, 56, 20-28 (2015). https://doi.org/10.1016/j.polymer.2014.10.017
  13. Y. Chen, S. Zhou, G. Chen, and L. Wu, Preparation and characterization of polyester/silica nanocomposite resins, Prog. Org. Coat., 54, 120-126 (2005). https://doi.org/10.1016/j.porgcoat.2004.03.013
  14. V. D. Athawale and M. A. Kulkarni, Synthesis and performance evaluation of polyurethane/silica hybrid resins, Pigm. Resin Technol., 40, 49-57 (2011). https://doi.org/10.1108/03699421111095946
  15. J. K, Yoon and K. W. Koo, A study on properties of thermal insulation board prepared by porous silica aerogel, Trans. Korean Inst. Electr. Eng., 61(9), 1362-1367 (2012). https://doi.org/10.5370/KIEE.2012.61.9.1362
  16. G. Yang, X. Liu, and V. Lipik, Evaluation of silica aerogel-reinforced polyurethane foams for footwear applications, J. Mater. Sci., 53, 9463-9472 (2018). https://doi.org/10.1007/s10853-018-2244-1
  17. S. Chen, J. Sui, and L. Chen, Positional assembly of hybrid polyurethane nanocomposites via incorporation of inorganic building blocks into organic polymer, Colloid Polym. Sci., 283, 66-73 (2004). https://doi.org/10.1007/s00396-004-1093-4
  18. I. Javni, W. Zhang, V. Karajkov, and Z. S. Petrovic, Effect of nano- and micro-silica fillers on polyurethane foam properties, J. Cell. Plast., 38, 229-2g39 (2002). https://doi.org/10.1177/0021955X02038003139