DOI QR코드

DOI QR Code

Effects of Oxidation Process on Thermal Properties of Petroleum-based Isotropic Pitch

산화 공정이 석유계 등방성 피치의 열거동 특성에 미치는 영향

  • Lee, Namji (Carbon Industry Frontier Research Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Seo, Sang Wan (Carbon Industry Frontier Research Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kwak, Cheol Hwan (Carbon Industry Frontier Research Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kim, Min Il (Carbon Industry Frontier Research Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Im, Ji Sun (Carbon Industry Frontier Research Center, Korea Research Institute of Chemical Technology (KRICT))
  • 이남지 (한국화학연구원(KRICT) 탄소산업선도연구단) ;
  • 서상완 (한국화학연구원(KRICT) 탄소산업선도연구단) ;
  • 곽철환 (한국화학연구원(KRICT) 탄소산업선도연구단) ;
  • 김민일 (한국화학연구원(KRICT) 탄소산업선도연구단) ;
  • 임지선 (한국화학연구원(KRICT) 탄소산업선도연구단)
  • Received : 2019.12.05
  • Accepted : 2019.12.28
  • Published : 2020.02.10

Abstract

In order to investigate the effect of the oxidation process on thermal properties of the pitch, the oxidized pitch was prepared by changing the oxidation temperature. Thermal properties of the pitch were analyzed using thermogravimetric analysis (TGA), and it divided into three sections as A (25~100 ℃), B (250~550 ℃) and C (550~800 ℃) by derivative thermogravimetry (DTG) graph behavior. In the A section, the was reduced because the moisture contained in the pitch was removed. In the B section, as the oxidation temperature increased, the thermal stability of the pitch is improved. Because the degree of aromaticity and molecular weight of the pitch increased with increasing oxidation temperature. In contrast, the results of the C section were shown opposite of B section. Because the introduced C-OH, C-O-C, and C=O bonds were decomposed, and the resulting oxygen compounds induced the combustion reaction of the pitch.

산화 공정이 피치의 열거동 특성에 미치는 영향을 규명하기 위하여 다양한 공정 온도에서 산화된 피치를 제조하였다. 피치의 열거동 특성은 thermogravimetric analysis (TGA)를 이용하여 분석하였으며, derivative thermogravimetry (DTG) 그래프 거동 변화에 따라 A (25~100 ℃), B (250~550 ℃), C (550~800 ℃) 세 구간으로 분석하였다. A 구간에서는 피치에 함유되어 있던 수분이 제거되면서 중량 감소가 발생하였다. B 구간에서 산화에 의하여 피치의 열적 안정성이 향상되었다. 이는 산화 온도가 증가할수록 피치의 방향족화도 및 분자량이 증가하였기 때문으로 판단된다. 반면, C 구간에서는 B 구간과 반대의 결과를 보였다. C 구간에서 열적 안정성이 저해된 것은 산화 공정에 의하여 피치에 도입된 C-OH, C-O-C, C=O 결합이 분해되고, 이에 의하여 발생한 산소 화합물이 피치의 연소 반응을 유도하였기 때문으로 사료된다.

Keywords

References

  1. K. H. Kim, S. M. Lee, D. H. An, and Y. S. Lee, Effect of ${\beta}$-resin of petroleum-based binder pitch on density of carbon block, Appl. Chem. Eng., 28, 432-436 (2017). https://doi.org/10.14478/ace.2017.1035
  2. S. W. Seo, J. H. Kim, Y. S. Lee, and J. S. Im, Identification of synthesized pitch derived from pyrolyzed fuel oil (PFO) by pressure, Appl. Chem. Eng., 29, 652-656 (2018). https://doi.org/10.14478/ACE.2018.1070
  3. J. H. Kim and H. G. Kim, Characterization of pitch derived from petroleum residue and coal-tar, Trans. Korean Hydrogen New Energy Soc., 27, 612-619 (2016). https://doi.org/10.7316/KHNES.2016.27.5.612
  4. K. Y. Cho, D. H. Riu, D. G. Shin, H. J. Joo, H. H. Koo, and I. S. Park, Densification behavior of C/C composite derived from coal tar pitch with small amount of iodine addition, J. Korean Ceram. Soc., 46, 643-647 (2009). https://doi.org/10.4191/KCERS.2009.46.6.643
  5. S. Y. Eom, C. H. Lee, K. H. Park, and S. K. Ryu, The optimum stabilization conditions of $TiO_2$-containing pitch fiber, Korean Chem. Eng. Res., 45, 269-276 (2007).
  6. E. J. Song, M. J. Kim, J. I. Han, Y. J. Choi, and Y. S. Lee, Gas adsorption characteristics of by interaction between oxygen functional groups introduced on activated carbon fibers and acetic acid molecules, Appl. Chem. Eng., 30, 160-166 (2019). https://doi.org/10.14478/ACE.2018.1122
  7. J. Y. Yang, J. K. Ko, K. E. Yoon, and M. K. Seo, Influence of ozone treatment on oxidative stabilization behavior of coal-tar-based isotropic pitch fibers, Text. Sci. Eng., 51, 265-272 (2014). https://doi.org/10.12772/TSE.2014.51.265
  8. J. H. Jang, G. B. Han, and H. Kim, Effect of pre-treatment by ozone on chemical surface modification of activated carbon fiber, J. Korean Soc. Environ. Eng., 35, 415-421 (2013). https://doi.org/10.4491/KSEE.2013.35.6.415
  9. J. K. Lee, S. J. In, D. W. Lee, B. S. Rhee, and S. K. Ryu, Stabilization of the isotropic pitch fibers drived from petroleum with nitric acid vapor, Korean Chem. Eng. Res., 28, 669-675 (1990).
  10. J. K. Lee, S. J. In, B. S. Rhee, and S. K. Ryu, Carbonization of isotropic pitch fiber oxidized with nitric acid vapor or hot air, Korean Chem. Eng. Res., 29, 433-439 (1991).
  11. S. H. Yang, I. J. Kim, M. J. Jeon, S. I. Moon, H. S. Kim, K. H. An, and Y. P. Lee, Oxidation-treated of oxidized carbons and its electrochemical performances for electric double layer capacitor, J. Korean Inst. Electr. Electron. Mater. Eng., 20, 502-507 (2007). https://doi.org/10.4313/JKEM.2007.20.6.502
  12. W. Han, W. K. Choi, K. H. An, H. G. Kim, S. J. Kang, and B. J. Kim, Effects of crack resistance properties of ozone-treated carbon fibers-reinforced nylon-6 matrix composites, Appl. Chem. Eng., 24, 363-369 (2013).
  13. H. J. Jo, M. J. Jung, H. I. Lee, and Y. S. Lee, Preparation and characterization of mesophase pitches from petroleum residues using two-step heat treatment, Trans. Korean Hydrogen New Energy Soc., 27, 421-430 (2016). https://doi.org/10.7316/KHNES.2016.27.4.421
  14. H. J. Ko, C. U. Park, H. H. Cho, M. J. Yoo, M. S. Kim, and Y. S. Lim, Preparation of coal tar pitch as carbon fibers precursor from coal tar, Korean J. Mater. Res., 23, 276-280 (2013). https://doi.org/10.3740/MRSK.2013.23.5.276
  15. S. H. Ko, J. E. Choi, C. W. Lee, and Y. P. Jeon, Modified oxidative thermal treatment for the preparation of isotropic pitch towards cost-competitive carbon fiber, J. Ind. Eng. Chem., 54, 252-261 (2017). https://doi.org/10.1016/j.jiec.2017.05.039
  16. D. H. Jung, Y. S. Lee, and B. S. Rhee, The stabilization of mesophase pitch based carbon fiber, Korean Chem. Eng. Res., 29, 89-96 (1991).
  17. J. Y. Yang, S. H. Park, S. J. Park, and M. K. Seo, Preparation and characteristic of carbon/carbon composites with coal-tar and petroleum binder pitches, Appl. Chem. Eng., 26, 406-412 (2015). https://doi.org/10.14478/ace.2015.1035
  18. M. C. Kim, S. Y. Eom, S. K. Ryu, and Dan D. Edie, Reformation of naphtha cracking bottom oil for the preparation of carbon fiber precursor pitch, Korean Chem. Eng. Res., 43, 745-750 (2005).
  19. M. J. Jung, Y. Y. Ko, and Y. S. Lee, Synthesis of pitch from PFO, byproduct of naphtha cracking process using UV irradiation and $AlCl_3$ catalyst, Appl. Chem. Eng., 26, 224-228 (2015). https://doi.org/10.14478/ace.2015.1023
  20. D. Y. Kim, J. H. Kim, H. I. Lee, and Y. S. Lee, The characteristics of mesophase pitch prepared by heterogeneous fluorination process from pyrolysis fuel oil, Appl. Chem. Eng., 27, 537-542 (2016). https://doi.org/10.14478/ace.2016.1088
  21. J. G. Kim, J. H. Kim, B. J. Song, C. W. Lee, and J. S. Im, Synthesis and its characterization of pitch from pyrolyzed fuel oil (PFO), J. Ind. Eng. Chem., 36, 293-297 (2016). https://doi.org/10.1016/j.jiec.2016.02.014
  22. B. C. Bai, J. G. Kim, J. H. Kim, C. W. Lee, Y. S. Lee, and J. S. Im, Blending effect of pyrolyzed fuel oil and coal tar in pitch production for artificial graphite, Carbon Lett., 25, 78-83 (2018). https://doi.org/10.5714/CL.2018.25.078
  23. K. Y. Cho and K. J Kim, The oxi-stabilization of carbon precursor using heat treated pitch, J. Korean Ceram. Soc., 40, 985-990 (2003). https://doi.org/10.4191/KCERS.2003.40.10.985
  24. Y. S. Lim, Stabilization of mesophase pitch for carbon/carbon composites, J. Korean Ceram. Soc., 34, 817-824 (1997).
  25. J. J. Fernandez, A. Figueiras, M. Granda, J. Bermejo, and R. Menendez, Modification of coal-tar pitch by air-blowing I. Variation of pitch composition and properties, Carbon, 33, 295-307 (1995). https://doi.org/10.1016/0008-6223(94)00130-R
  26. J. J. Fernandez, A. Figueiras, M. Granda, J. Bermejo, and R. Menendez, Modification of coal-tar pitch by air-blowing II. Influence on coke structure and properties, Carbon, 33, 1235-1245 (1995). https://doi.org/10.1016/0008-6223(95)00062-I
  27. T. Guan, G. Zhang, J. Zhao, J. Wang, and K. Li, Insight into the oxidative reactivity of pitch fractions for predicting and optimizing the oxidation stabilization of pitch, Fuel, 242, 184-194 (2019). https://doi.org/10.1016/j.fuel.2019.01.034
  28. K. S. Kim, J. S. Im, J. D. Lee, J. H. Kim, and J. U. Hwang, Effects of pitch softening point-based on soft carbon anode for initial efficiency and rate performance, Appl. Chem. Eng., 30, 331-336 (2019). https://doi.org/10.14478/ACE.2019.1015
  29. D. H. Lee, Y. H. Choi, K. Y. Rhee, K. S. Yang, and B. J. Kim, Facile preparation and characterization of carbon fibers with core-shell structure from graphene-dispersed isotropic pitch compounds, Nanomaterials, Doi:10.3390/nano9040521
  30. T. H. Lim and S. Y. Yeo, Investigation of the degradation of pitch-based carbon fibers properties upon insufficient or excess thermal treatment, Sci. Rep., Doi:10.1038/s41598-017-05192-5
  31. M. S. Shafeeyan, W. M. A. W. Daud, A. Houshmand, and A. Shamiri, A review on surface modification of activated carbon for carbon dioxide adsorption, J. Anal. Appl. Pyrol., 89, 143-151 (2010). https://doi.org/10.1016/j.jaap.2010.07.006
  32. J. L. Figueiredo, M. F. R. Pereira, M. M. A. Freitas, and J. J. M. Orfao, Modification of the surface chemistry of activated carbons, Carbon, 37, 1379-1389 (1999). https://doi.org/10.1016/S0008-6223(98)00333-9