DOI QR코드

DOI QR Code

Thermo-electro-elastic nonlinear stability analysis of viscoelastic double-piezo nanoplates under magnetic field

  • Ebrahimi, Farzad (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University) ;
  • Hosseini, S. Hamed S. (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University) ;
  • Selvamani, Rajendran (Department of mathematics, Karunya Institute of Technology and Sciences)
  • Received : 2018.06.12
  • Accepted : 2019.08.27
  • Published : 2020.03.10

Abstract

The nonlinear thermo-electro-elastic buckling behavior of viscoelastic nanoplates under magnetic field is investigated based on nonlocal elasticity theory. Employing nonlinear strain-displacement relations, the geometrical nonlinearity is modeled while governing equations are derived through Hamilton's principle and they are solved applying semi-analytical generalized differential quadrature (GDQ) method. Eringen's nonlocal elasticity theory considers the effect of small size, which enables the present model to become effective in the analysis and design of nano-sensors and nano actuators. Based on Kelvin-Voigt model, the influence of the viscoelastic coefficient is also discussed. It is demonstrated that the GDQ method has high precision and computational efficiency in the buckling analysis of viscoelastic nanoplates. The good agreement between the results of this article and those available in literature validated the presented approach. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as electric voltage, small scale effects, elastomeric medium, magnetic field, temperature effects, the viscidity and aspect ratio of the nanoplate on its nonlinear buckling characteristics. It is explicitly shown that the thermo-electro-elastic nonlinear buckling behavior of viscoelastic nanoplates is significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of viscoelastic nanoplates as fundamental elements in nanoelectromechanical systems.

Keywords

References

  1. Ansari, R., Rouhi, H. and Sahmani, S. (2011), "Thermal effect on axial buckling behavior of multi-walled carbon nanotubes based on nonlocal shell model", Physica E Low Dimensional Syst. Nanostruct., 44(2), 373-378. https://doi.org/10.1016/j.physe.2011.08.036.
  2. Arani, A. G. and Zarei, M. S. H. (2014), "Nonlinear nonlocal vibration of an embedded viscoelastic Y-SWCNT conveying viscous fluid under magnetic field using homotopy analysis method", J. Solid Mech., 6(2), 173-193.
  3. Arani, A. G., Amir, S., Dashti, P. and Yousefi, M. (2014), "Flowinduced vibration of double bonded visco-CNTs under magnetic fields considering surface effect", Comput. Mater. Sci., 86, 144-154. https://doi.org/10.1016/j.commatsci.2014.01.047.
  4. Arani, A. G., Kolahchi, R., Barzoki, A. A. M., Mozdianfard, M. R. and Farahani, S. M. N. (2013), "Elastic foundation effect on nonlinear thermo-vibration of embedded double-layered orthotropic graphene sheets using differential quadrature method", Proc. Institution of Mechanical Engineers, Part C J. Mech. Eng. Sci., 227(4), 862-879. https://doi.org/10.1177/0954406212453808.
  5. Armaghani, D. J., Mirzaei, F., Shariati, M., Trung, N. T., Shariat, M. and Trnavac, D. (2020), "Hybrid ANN-based techniques in predicting cohesion of sandy-soil combined with fiber", Geomech. Eng., 20(3), 175-189. https://doi.org/10.12989/gae.2020.20.3.175.
  6. Chahnasir, E. S., Zandi, Y., Shariati, M., Dehghani, E., Toghroli, A., Mohamad, E. T., Shariati, A., Safa, M., Wakil, K. and Khorami, M. (2018), "Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors", Smart Struct. Syst., 22(4), 413-424. https://doi.org/10.12989/sss.2018.22.4.413.
  7. Chattopadhyay, A. and Gu, H. (1994), "New higher order plate theory in modeling delamination buckling of composite laminates", AIAA J., 32(8), 1709-1716. https://doi.org/10.2514/3.12163.
  8. Chen, W., Shu, C., He, W. and Zhong, T. (2000), "The application of special matrix product to differential quadrature solution of geometrically nonlinear bending of orthotropic rectangular plates", Comput. Struct., 74(1), 65-76. https://doi.org/10.1016/S0045-7949(98)00320-4.
  9. Chuanhua, X., Zhang, X., James H. Haido, Peyman Mehrabi, Ali Shariati, Edy Tonnizam Mohamad, Nguyen Hoang and Karzan Wakil, "Using genetic algorithms method for the paramount design of reinforced concrete structures", Struct. Eng. Mech., 71(5), 503-513. https://doi.org/10.12989/sem.2019.71.5.503.
  10. Di Sciuva, M. (1986), "Bending, vibration and buckling of simply supported thick multilayered orthotropic plates: an evaluation of a new displacement model", J. Sound Vib., 105(3), 425-442. https://doi.org/10.1016/0022-460X(86)90169-0.
  11. Dickinson, S. M. (1978), "The buckling and frequency of flexural vibration of rectangular isotropic and orthotropic plates using Rayleigh's method", J. Sound Vib., 61(1), 1-8. https://doi.org/10.1016/0022-460X(78)90036-6.
  12. Eringen, A. C. (1972), "Nonlocal polar elastic continua", J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
  13. Eringen, A. C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
  14. Findley, W. N., Lai, J. S. Y. and Onaran, K., (1976), Creep and Relaxation of Nonlinear Viscoelastic Materials, with an Introduction to Linear Viscoelasticity, Oxford, New York.
  15. Jamalpoor, A. and Hosseini, M. (2015), "Biaxial buckling analysis of double-orthotropic microplate-systems including in-plane magnetic field based on strain gradient theory", Compos. Part B Eng., 75, 53-64. https://doi.org/10.1016/j.compositesb.2015.01.026.
  16. Javaheri, R. and Eslami, M. R. (2002), "Thermal buckling of functionally graded plates", AIAA J., 40(1), 162-169. https://doi.org/10.2514/2.1626.
  17. Jomehzadeh, E. and Saidi, A. R. (2011), "The small scale effect on nonlinear vibration of single layer graphene sheets", World Acad. Sci. Eng. Technol, 5, 235-239.
  18. Jung, W. Y., Han, S. C. and Park, W. T. (2014), "A modified couple stress theory for buckling analysis of S-FGM nanoplates embedded in Pasternak elastic medium", Compos. Part B Eng., 60, 746-756. https://doi.org/10.1016/j.compositesb.2013.12.058.
  19. Kane, C. L. and Mele, E. J. (1997), "Size, shape, and low energy electronic structure of carbon nanotubes", Phys. Rev. Lett., 78(10), 1932. https://doi.org/10.1103/PhysRevLett.78.1932.
  20. Kapania, R. K. and Yang, T. Y. (1987), "Buckling, postbuckling, and nonlinear vibrations of imperfect plates", AIAA J., 25(10), 1338-1346. https://doi.org/10.2514/3.9788.
  21. Katebi, J., Shoaei-parchin, M., Shariati, M., Trung, N. T., & Khorami, M. (2019), "Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-019-00780-7.
  22. Ke, L. L. and Wang, Y. S. (2012), "Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory", Smart Mater. Struct., 21(2), 025018. https://doi.org/10.1088/0964-1726/21/2/025018.
  23. Knightly, G. H. and Sather, D. (1974), "Nonlinear buckled states of rectangular plates", Arch. Rational Mech. Anal., 54(4), 356-372. https://doi.org/10.1007/BF00249196.
  24. Kolahchi, R., Bidgoli, M. R., Beygipoor, G. and Fakhar, M. H. (2015), "A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", J. Mech. Sci. Technol., 29(9), 3669-3677. https://doi.org/10.1007/s12206-015-0811-9.
  25. Kutlu, A. and Omurtag, M. H. (2012), "Large deflection bending analysis of elliptic plates on orthotropic elastic foundation with mixed finite element method", J. Mech. Sci., 65(1), 64-74. https://doi.org/10.1016/j.ijmecsci.2012.09.004.
  26. Lakes, R., (2009), Viscoelastic Materials, Cambridge, New York.
  27. Lancaster, P. and Tismenetsky, M. (1985), The Theory of Matrices: with Applications, Elsevier, Germany.
  28. Lei, Z. X., Liew, K. M. and Yu, J. L. (2013), "Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method", Compos. Struct., 98, 160-168. https://doi.org/10.1016/j.compstruct.2012.11.006.
  29. Li, S. R., Zhou, Y. H. and Song, X. (2002), "Non-linear vibration and thermal buckling of an orthotropic annular plate with a centric rigid mass", J. Sound Vib., 251(1), 141-152. https://doi.org/10.1006/jsvi.2001.3987.
  30. Li, Y. S., Cai, Z. Y. and Shi, S. Y. (2014), "Buckling and free vibration of magnetoelectroelastic nanoplate based on nonlocal theory", Compos. Struct., 111, 522-529. https://doi.org/10.1016/j.compstruct.2014.01.033.
  31. Liu, C., Ke, L. L., Wang, Y. S., Yang, J. and Kitipornchai, S. (2013), "Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory", Compos. Struct., 106, 167-174. https://doi.org/10.1016/j.compstruct.2013.05.031.
  32. Luo, Z., Sinaei, H., Ibrahim, Z., Shariati, M., Jumaat, Z., Wakil, Pham, Binh Thai, Mohamad, E.T. and Khorami, M. (2019) "Computational and experimental analysis of beam to column joints reinforced with CFRP plates", Steel Compos. Struct., 30(3), 271-280. https://doi.org/10.12989/scs.2019.30.3.271.
  33. Ma, L. S. and Wang, T. J. (2003), "Nonlinear bending and post-buckling of a functionally graded circular plate under mechanical and thermal loadings", J. Solids Struct., 40(13-14), 3311-3330. https://doi.org/10.1016/S0020-7683(03)00118-5.
  34. Maiti, A., Svizhenko, A. and Anantram, M. P. (2002), "Electronic transport through carbon nanotubes: Effects of structural deformation and tube chirality", Phys. Review Lett., 88(12), 126805. https://doi.org/10.1103/PhysRevLett.88.126805.
  35. Mansouri, I., Shariati, M., Safa, M., Ibrahim, Z., Tahir, M. M. and Petkovic, D. (2019), "Analysis of influential factors for predicting the shear strength of a V-shaped angle shear connector in composite beams using an adaptive neuro-fuzzy technique", J. Intelligent Manufact., 30(3), 1247-1257. https://doi.org/10.1007/s10845-017-1306-6.
  36. Milovancevic, M., Marinovic, J. S., Nikolic, J., Kitic, A., Shariati, M., Trung, N. T., Wakil, K. and Khorami, M. (2019). "UML diagrams for dynamical monitoring of rail vehicles", Physica A Statistical Mech. Appl., 53, 121169. https://doi.org/10.1016/j.physa.2019.121169.
  37. Mohammadhassani, M., Saleh, A., Suhatril, M. and Safa, M. (2015), "Fuzzy modelling approach for shear strength prediction of RC deep beams", Smart Struct. Syst., 16(3), 497-519. https://doi.org/10.12989/sss.2015.16.3.497.
  38. Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2013), "Identification of a suitable ANN architecture in predicting strain in tie section of concrete deep beams", Struct. Eng. Mech, 46(6), 853-868. http://dx.doi.org/10.12989/sem.2013.46.6.853.
  39. Moon, F. C. and Pao, Y. H. (1968), "Magnetoelastic buckling of a thin plate", J. Appl. Mech., 35(1), 53-58. https://doi.org/10.1115/1.3601173.
  40. Murmu, T. and Pradhan, S. C. (2009), "Buckling of biaxially compressed orthotropic plates at small scales", Mech. Res. Communications, 36(8), 933-938. https://doi.org/10.1016/j.mechrescom.2009.08.006
  41. Murmu, T., Sienz, J., Adhikari, S. and Arnold, C. (2013), "Nonlocal buckling of double-nanoplate-systems under biaxial compression", Compos. Part B Eng., 44(1), 84-94. https://doi.org/10.1016/j.compositesb.2012.07.053.
  42. Pietrzakowski, M. (2008), "Piezoelectric control of composite plate vibration: Effect of electric potential distribution", Comput. Struct., 86(9), 948-954. https://doi.org/10.1016/j.compstruc.2007.04.023.
  43. Pradhan, S. C. and Murmu, T. (2010), "Small scale effect on the buckling analysis of single-layered graphene sheet embedded in an elastic medium based on nonlocal plate theory", Physica E Low Dimensional Syst. Nanostruct., 42(5), 1293-1301. https://doi.org/10.1016/j.physe.2009.10.053.
  44. Reddy, J. N. (2010), "Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates", J. Eng. Sci., 48(11), 1507-1518. https://doi.org/10.1016/j.ijengsci.2010.09.020.
  45. Reddy, J. N. and Wang, C. M. (2004), "Dynamics of fluid-conveying beams: governing equations and finite element models", CORE Report No. 2004-03; Centre for Offshore Research and Engineering, Singapore.
  46. Sedghi, Y., Zandi, Y., Toghroli, A., Safa, M., Mohamad, E. T., Khorami, M. and Wakil, K. "Application of ANFIS technique on performance of C and L shaped angle shear connectors", Smart Struct. Syst., 22(3), 335-340. https://doi.org/10.12989/sss.2018.22.3.335.
  47. Shahabi, S. E. M., Sulong, N. H., Shariati, M., Mohammadhassani, M. and Shah, S. N. R. (2016), "Numerical analysis of channel connectors under fire and a comparison of performance with different types of shear connectors subjected to fire", Steel Compos. Struct., 20(3), 651-669. https://doi.org/10.12989/scs.2016.20.3.651.
  48. Shahwan, K. W. and Waas, A. M. (1998), "Buckling of unilaterally constrained plates: applications to the study of delaminations in layered structures", J. Franklin Institute, 335(6), 1009-1039. https://doi.org/10.1016/S0016-0032(97)00053-7.
  49. Shao, Z., Armaghani, D. J., Bejarbaneh, B. Y., Mu'azu, M. and Mohamad, E. T. (2019a), "Estimating the Friction Angle of Black Shale Core Specimens with Hybrid-ANN Approaches", Measurement, 145, https://doi.org/10.1016/j.measurement.2019.06.007.
  50. Shao, Z., Gholamalizadeh, E., Boghosian, A., Askarian, B. and Liu, Z. (2019b). "The chiller's electricity consumption simulation by considering the demand response program in power system", Appl. Therm. Eng., 149, 1114-1124. https://doi.org/10.1016/j.applthermaleng.2018.12.121.
  51. Shao, Z. and Vesel, A. (2015). "Modeling the packing coloring problem of graphs", Appl. Math. Model., 39(13), 3588-3595. https://doi.org/10.1016/j.apm.2014.11.060.
  52. Shao, Z., Wakil, K., Usak, M., Amin Heidari, M., Wang, B. and Simoes, R. (2018), "Kriging Empirical Mode Decomposition via support vector machine learning technique for autonomous operation diagnosing of CHP in microgrid", Appl. Thermal. Eng., 145, 58-70. https://doi.org/10.1016/j.applthermaleng.2018.09.028.
  53. Shariati, A., Ebrahimi, F., Karimiasl, M., Vinyas, M. and Toghroli, A. (2020a), "On transient hygrothermal vibration of embedded viscoelastic flexoelectric/piezoelectric nanobeams under magnetic loading", Adv. Nano. Res., 8(1), 49-58. https://doi.org/10.12989/anr.2020.8.1.049
  54. Shariati, M., Ghorbani, M., Naghipour, M., Alinejad, N. and Toghroli, A. (2020b), "The effect of RBS connection on energy absorption in tall buildings with braced tube frame system", Steel Compos. Struct. 34(3), 393-407. https://doi.org/10.12989/scs.2020.34.3.393.
  55. Shariati, M., Mafipour, M. S., Haido, J. H., Yousif, S. T., Toghroli, A., Trung, N. T. and Shariati, A. (2020c), "Identification of the most influencing parameters on the properties of corroded concrete beams using an Adaptive Neuro-Fuzzy Inference System (ANFIS)", Steel Compos. Struct. 34(1), 155. https://doi.org/10.12989/scs.2020.34.1.155.
  56. Shariati, M., Mafipour, M. S., Mehrabi, P., Ahmadi, M., Wakil, K., Nguyen-Thoi, T. and Toghroli, A. (2020d), "Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm)", Smart Struct. Syst., 25(2), 183-195. https://doi.org/10.12989/sss.2020.25.2.183.
  57. Shariati, M., Mafipour, M. S., Mehrabi, P., Bahadori, A., Zandi, Y., Salih, M. N. A., Nguyen, H., Dou, J., Song, X. and Poi-Ngian, S. (2019a), "Application of a Hybrid Artificial Neural Network-Particle Swarm Optimization (ANN-PSO) Model in Behavior Prediction of Channel Shear Connectors Embedded in Normal and High-Strength Concrete", Appl. Sci., 9(24), 5534. https://doi.org/10.3390/app9245534
  58. Shariati, M., Mafipour, M.S., Mehrabi, P., Shariati, A., Toghroli, A., Trung, N.T. and Salih, M.N.A. (2020e), "A novel approach to predict shear strength of tilted angle connectors using artificial intelligence techniques", Eng. Comput., 1-21. https://doi.org/10.1007/s00366-019-00930-x.
  59. Shariati, M., Mafipour, M. S., Mehrabi, P., Zandi, Y., Dehghani, D., Bahadori, A., Shariati, A., Trung, N.T., Salih, M.N.A. and Poi-Ngian, S. (2019), "Application of Extreme Learning Machine (ELM) and Genetic Programming (GP) to design steel-concrete composite floor systems at elevated temperatures", Steel Compos. Struct., 33(3), 319-332. https://doi.org/10.12989/scs.2019.33.3.319.
  60. Shariati, M., Naghipour, M., Yousofizinsaz, G., Toghroli, A. and Pahlavannejad Tabarestani, N. (2020f), "Numerical study on the axial compressive behavior of built-up CFT columns considering different welding lines", Steel Compos. Struct. 34(3), 377-391.https://doi.org/10.12989/scs.2020.34.3.377.
  61. Shariati, M., Trung, N. T., Wakil, K., Mehrabi, P., Safa, M. and Khorami, M. (2019), "Moment-rotation estimation of steel rack connection using extreme learning machine", Steel. Compos. Struct., 31(5), 427-435. https://doi.org/10.12989/sem.2019.70.5.639.
  62. Shi, X., Hassanzadeh-Aghdam, M. and Ansari, R. (2019a), "Viscoelastic analysis of silica nanoparticle-polymer nanocomposites", Compos. Part B Eng., 158, 169-178. https://doi.org/10.1016/j.compositesb.2018.09.084.
  63. Shi, X., Jaryani, P., Amiri, A., Rahimi, A. and Malekshah, E. H. (2019b), "Heat transfer and nanofluid flow of free convection in a quarter cylinder channel considering nanoparticle shape effect", Powder Technol., 346, 160-170. https://doi.org/10.1016/j.powtec.2018.12.071.
  64. Shen, H. S. (2000), "Nonlinear bending of shear deformable laminated plates under transverse and in-plane loads and resting on elastic foundations", Compos. Struct., 50(2), 131-142. https://doi.org/10.1016/S0263-8223(00)00088-X.
  65. Shen, H. S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.
  66. Swaminathan, K. and Ragounadin, D. (2004), "Analytical solutions using a higher-order refined theory for the static analysis of antisymmetric angle-ply composite and sandwich plates", Compos. Struct., 64(3-4), 405-417. https://doi.org/10.1016/j.compstruct.2003.09.042.
  67. Suhatril, M., Osman, N., Sari, P. A., Shariati, M. and Marto, A. (2019), "Significance of Surface Eco-Protection Techniques for Cohesive Soils Slope in Selangor, Malaysia", Geotech. Geological Eng., 37(3), 2007-2014. https://doi.org/10.1007/s10706-018-0740-3.
  68. Trung, N. T., Shahgoli, A. F., Zandi, Y., Shariati, M., Wakil, K., Safa, M. and Khorami, M. (2019), "Moment-rotation prediction of precast beam-to-column connections using extreme learning machine", Struct. Eng. Mech., 70(5), 639-647. https://doi.org/10.12989/sem.2019.70.5.639.
  69. Wang, Q. (2002), "Axi-symmetric wave propagation in a cylinder coated with a piezoelectric layer", J. Solids Struct., 39(11), 3023-3037. https://doi.org/10.1016/S0020-7683(02)00233-0.
  70. Zhang, J., Wang, C. and Chen, W. (2014), "Surface and piezoelectric effects on the buckling of piezoelectric nanofilms due to mechanical loads", Meccanica, 49(1), 181-189. https://doi.org/10.1007/s11012-013-9784-x.
  71. Zhao, M., Qian, C., Lee, S. W. R., Tong, P., Suemasu, H. and Zhang, T. Y. (2007), "Electro-elastic analysis of piezoelectric laminated plates", Adv. Compos. Mater., 16(1), 63-81. https://doi.org/10.1163/156855107779755273.
  72. Ziliukas, A. (2008), "Plate buckling under complex loading", Mechanics, 74(6), 17-20.
  73. Zong, Z. and Zhang, Y. (2009), Advanced Differential Quadrature Methods, Chapman and Hall/CRC Press, Florida, U.S.A.