DOI QR코드

DOI QR Code

Finite volumes vs finite elements. There is a choice

  • Demirdzic, Ismet (Department of Mechanical Engineering, University of Sarajevo)
  • Received : 2019.12.18
  • Accepted : 2019.12.27
  • Published : 2020.02.25

Abstract

Despite a widely-held belief that the finite element method is the method for the solution of solid mechanics problems, which has for 30 years dissuaded solid mechanics scientists from paying any attention to the finite volume method, it is argued that finite volume methods can be a viable alternative. It is shown that it is simple to understand and implement, strongly conservative, memory efficient, and directly applicable to nonlinear problems. A number of examples are presented and, when available, comparison with finite element methods is made, showing that finite volume methods can be not only equal to, but outperform finite element methods for many applications.

Keywords

References

  1. Abaqus 6.11 Theory Manual, Dassault Systemes Simulia Corp. (2012), http://www.simulia.com/products/ abaqus_fea.html.
  2. Abaqus 6.13 Documentation, Dassault Systemes Simulia Corp. (2013), http://dsk.ippt.pan.pl/docs/abaqus/v6.13/index.html.
  3. ADINA R & D Inc. (2012), http://www.adina.com.
  4. Ansys-6.1 Verification Manual (2004), http://www.oulu.fi/atkk/tkpalv/unix/ansys-6.1/content/Hlp_V_ VM201.html.
  5. Bailey, C. and Cross, M. (1995), "A finite volume procedure to solve elastic solid mechanics prob-lems in three dimensions on an unstructured mesh", Int. J. Numer. Meth. Eng., 38, 1757-1776. https://doi.org/10.1002/nme.1620381010.
  6. Baliga, B.R. and Patankar, S.V. (1978), "A control-volume based finite element method for convective heat and mass transfer", 2nd International Conference on Computational Methods in Nonlinear Mechanics, Univ. of Texas, Austin, March.
  7. Basic, H., Demirdzic, I. and Muzaferija, S. (2005), "Finite volume method for simulation of extrusion processes", Int. J. Numer. Meth. Eng., 62, 475-494. https://doi.org/10.1002/nme.1168.
  8. Bathe, K.J. (1996), Finite Element Procedures, Prentice Hall, New Jersey.
  9. Beale, S.B. and Elias, S.R. (1991), "Numerical solution of two-dimensional elasticity problems by means of a SIMPLE-based finite-difference scheme", TR-LT020, National Research Council, Ottawa.
  10. Bijelonja, I., Demirdzic, I. and Muzaferija, S. (2005), "A finite volume method for large strain analysis of in- compressible hyperelastic materials", Int. J. Numer. Meth. Eng., 64, 1594-1609. https://doi.org/10.1002/nme.1413.
  11. Bijelonja, I., Demirdzic, I. and Muzaferija, S. (2017), "Mixed finite volume method for linear thermoelasticity at all Poisson's ratios", Numer. Heat Transf. A, 72, 215-235. https://doi.org/10.1080/10407782.2017.1372665.
  12. Cardiff, P. and Demirdzic, I. (2018), "Thirty years of the finite volume method for solid mechanics", arXiv:1810.02105v2.
  13. Cardiff, P., Karac, A. and Ivankovic, A. (2012), "Development of a finite volume contact solver based on the penalty method", Comput. Mater. Sci., 64, 283-284. https://doi.org/10.1016/j.commatsci.2012.03.011.
  14. Cardiff, P., Karac, A. and Ivankovic, A. (2014), "A large strain finite volume method for orthotropic bodies with general material orientations", Comput. Meth. Appl. Mech. Eng., 268, 318-335. https://doi.org/10.1016/j.cma.2013.09.008.
  15. Cardiff, P., Karac, A., De Jaeger, P., Jasak, H., Nagye, J., Ivankovic, A. and Tukovic, Z. (2018), "An open-source finite volume toolbox for solid mechanics and fluid-solid interaction simulations", arXiv preprint arXiv, 1808.10736.
  16. Cardiff, P., Tukovic, Z., De Jaeger, P., Clancy, M. and Ivankovic, A. (2016), "A Lagrangian cellcentred finite volume method for metal forming simulation", Int. J. Numer. Meth. Eng., 109, 1777-1803. https://doi.org/10.1002/nme.5345.
  17. Cardiff, P., Tukovic, Z., Jasak, H. and Ivankovic, A. (2016), "A block-coupled finite volume method-ology for linear elasticity and unstructured meshes", Comput. Struct., 175, 100-122. https://doi.org/10.1016/j.compstruc.2016.07.004.
  18. Carolan, D., Tukovic, Z., Murphy, N. and Ivankovic, A. (2013), "Arbitrary crack propagation in multi-phase materials using the finite volume method", Comput. Mater. Sci., 69, 153-159. https://doi.org/10.1016/j.commatsci.2012.11.049.
  19. Clough, R.W. (1960), "The finite element method in plane stress analysis", Proc. 2nd A.S.C.E. Conf. on Electronic Comp., Pittsburgh, PA.
  20. Das, S., Mathur, S.R. and Murthy, J.Y. (2011), "Un unstructured finite-volume method for structure-electrostatic interactions in MEMS", Numer. Heat Transf. B, 60, 425-451. https://doi.org/10.1080/10407790.2011.628252.
  21. Das, S., Mathur, S.R. and Murthy, J.Y. (2012), "Finite-volume method for creep analysis of thin RF MEMS devices using the theory of plates", Numer. Heat Transf. B, 61, 71-90. https://doi.org/10.1080/10407790.2012.646170.
  22. Demirdzic, I. (2008), "Finite volume stress analysis", STAR-2008 - Computing Technologies of Solving Applied Fluid Dynamics and Stress Analysis Problems, Nizhny Novgorod.
  23. Demirdzic, I. (2016), "A fourth-order finite volume method for structural analysis", Appl. Math. Model., 40, 3104-3114. https://doi.org/10.1016/j.apm.2015.09.098.
  24. Demirdzic, I. and Ivankovic, A. (1997), "Finite volume approach to modelling of plates", Proc. 2nd Congress of Croatian Society of Mechanics, Brac, Croatia.
  25. Demirdzic, I. and Martinovic, D. (1993), "Finite volume method for thermo-elasto-plastic stress analysis", Comput. Meth. Appl. Mech. Eng., 109, 331-349. https://doi.org/10.1016/0045-7825(93)90085-C.
  26. Demirdzic, I. and Muzaferija, S. (1994), "Finite volume method for stress analysis in complex domains", Int. J. Numer. Meth. Eng., 37, 3751-3766. https://doi.org/10.1002/nme.1620372110.
  27. Demirdzic, I. and Muzaferija, S. (1995), "Numerical method for coupled fluid flow, heat transfer and stress analysis using unstructured moving meshes with cells of arbitrary topology", Comput. Meth. Appl. Mech. Eng., 125, 235-255. https://doi.org/10.1016/0045-7825(95)00800-G.
  28. Demirdzic, I., Horman, I. and Martinovic, D. (2000), "Finite volume analysis of stress and deformation in hygro-thermo-elastic orthotropic body", Comput. Meth. Appl. Mech. Eng., 190, 1221-1232. https://doi.org/10.1016/S0045- 782(99)00476-4.
  29. Demirdzic, I., Martinovic, D. and Ivankovic, A. (1988), "Numerical simulation of thermal deformation in welded workpiece", Zavarivanje, 31, 209-219. (in Croatian)
  30. Demirdzic, I., Muzaferija, S. and Peric, M. (1997), "Benchmark solutions of some structural analysis prob- lems using finite-volume method and multigrid acceleration", Int. J. Numer. Meth. Eng., 40, 1893-1908. https://doi.org/10.1002/(SICI)1097-0207(19970530)40:10<1893:AID-NME146>3.0.CO;2-L.
  31. Fainberg, J. and Leister, H.J. (1996), "Finite volume multigrid solver for thermo-elastic stress analysis in anisotropic materials", Comput. Meth. Appl. Mech. Eng., 137, 167-174. https://doi.org/10.1016/S0045-782(96)01063- 8.
  32. Fallah, N. and Hatami, F. (2006), "A displacement formulation based on finite volume method for analysis of Timoshenko beam", Proceedings of the 7th International Conference on Civil Engineering, Tehran, Iran, May.
  33. Fallah, N. and Parayandeh-Shahrestany, A. (2014), "A novel finite volume based formulation for the elasto- plastic analysis of plates", Thin Wall. Struct., 77, 153-164. https://doi.org/10.1016/j.tws.2013.09.025.
  34. Fryer, Y.D., Bailey, C., Cross, M. and Lai, C.H. (1991), "A control volume procedure for solving the elastic stress-strain equations on an unstructured mesh", Appl. Math. Model., 15, 639-645. https://doi.org/10.1016/S0307- 904X(09)81010-X.
  35. Gonzalez, I., Naseri, A., Chiva, J., Rigola, J. and Perez-Segarra, C.D. (2018), "An enhanced finite volume based solver for thermoelastic materials in fluid-structure coupled problems", 6th European Conference on Com- putational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), Glasgow, UK.
  36. Hadzalic, E., Ibrahimbegovic, A. and Dolarevic, S. (2018), "Fluid-structure interaction system predicting both internal pore pressure and outside hydrodynamic pressure", Couple. Syst. Mech., 7, 649-668. https://doi.org/10.12989/CSM.2018.7.6.649.
  37. Hadzalic, E., Ibrahimbegovic, A. and Nikolic, M. (2018), "Failure mechanisms in coupled poro-plastic medium", Couple. Syst. Mech., 7, 43-59. https://doi.org/10.12989/csm.2018.7.1.043.
  38. Hatami, F., Fallah, N. and Pourzeynali, S. (2006), "Application of the finite volume method for shell analysis: A membrane study", Eds. B.H.V. Topping, G. Montero, R. Montenegro, Proceedings of the Eighth International Conference on Computational Structures Technology, Civil-Comp Press, Stirlingshire, UK. https://doi.org/10.4203/ccp.83.160.
  39. Hubner, B., Walhorb, E. and Dinkler, D. (2001), "Strongly coupled analysis of fluid-structure interaction using space-time finite elements", European Conference on Computational Mecnanics, Cracow.
  40. Ibrahimbegovic, A. and Boujelben, A. (2018), "Long-term simulation of wind turbine structure for distributed loading describing long-term wind loads for preliminary design", Couple. Syst. Mech., 7, 233-254. https://doi.org/10.12989/csm.2018.7.2.233.
  41. Irish Centre for High-End Computing: Abaqus Benchmarks (2013), https://www.ichec.ie/academic/ national-hpc-service/software/abaqus.
  42. Isic, S., Dolecek, V. and Karabegovic, I. (2007), "A comparison between finite element and finite volume methods on the problem of stability of Timoshenko beam", The 12th International Conference on Problems of Material Engineering, Mechanics and Design, Jasna, Slovakia.
  43. Ivankovic, A., Demirdzic, I., Williams, J.G. and Leevers, P.S. (1994), "Application of the finite volume method to the analysis of dynamic fracture problems", Int. J. Fract., 66, 357-371. https://doi.org/10.1007/BF00018439
  44. Ivankovic, A., Muzaferija, S. and Demirdzic, I. (1997), "Finite volume method and multigrid acceleration in modelling of rapid crack propagation in full-scale pipe test", Comput. Mech., 20, 46-52. https://doi.org/10.1007/s004660050215.
  45. Jasak, H. and Weller, H. (2000), "Finite volume methodology for contact problems of linear elastic solids", Proc. of Third International Conference of Croatian Society of Mechanics, Cavtat/Dubrovnik, Croatia.
  46. Kanyanta, V., Ivankovic, A. and Karac, A. (2009), "Validation of a fluid-structure interaction numerical model for predicting flow transients in arteries", J. Biomech., 42, 1705-1712. https://doi.org/10.1016/j.jbiomech.2009.04.023.
  47. Lippmann, H. (1981), Mechanik des Plastischen Fliesens, Springer, Berlin.
  48. Lou, S., Zhao, G., Wang, R. and Wu, X. (2008), "Modeling of aluminium alloy profile extrusion process using finite volume method", J. Mater. Proc. Technol., 206, 481-490. https://doi.org/10.1016/j.jmatprotec.2007.12.084.
  49. Martinovic, D., Horman, I. and Demirdzic, I. (2001), "Numerical and experimental analysis of wood drying process", Wood Sci. Technol., 35,143-156. https://doi.org/10.1007/s002260000083.
  50. Moreno-Navarro, P., Ibrahimbegovic, A. and Perez-Aparicio, J.L. (2018), "Linear elastic mechanical system interacting with coupled thermo-electro-magnetic fields", Couple. Syst. Mech., 7, 5-25. https://doi.org/10.12989/csm.2018.7.1.005.
  51. National Agency for Finite Element Methods and Standards (1990), The Standard NAFEMS Benchmarks, NAFEMS, UK.
  52. Onate, E., Cervera, M. and Zienkiewicz, O.C. (1994), "A finite volume format for structural mechanics", Int. J. Numer. Meth. Eng., 37, 181-201. https://doi.org/10.1002/nme.1620370202.
  53. Peric, M. (2004), "Estimation of iteration errors and convergence speed up", Private Communication.
  54. Spalding, D.B. (1993), "Simulation of fluid flow, heat transfer and solid deformation simultaneously", NAFEMS Conference No 4, Brighton.
  55. Spalding, D.B. (2006), "Extending the boundaries of heat transfer", The13th International Heat Transfer Conference, Sydney, Australia, August.
  56. Spalding, D.B. (2008), "Enlarging the frontiers of computational fluid dynamics", A Lecture at the International Symposium HMT&H in Swirling Flow, Moscow, October.
  57. Stylianou, V. and Ivankovic, A. (2002a), "Finite volume analysis of dynamic fracture phenomena I. A node release methodology", Int. J. Fract., 113, 107-123. https://doi.org/10.1023/A:1015532129150
  58. Stylianou, V. and Ivankovic, A. (2002b), "Finite volume analysis of dynamic fracture phenomena II. A cohesive zone type methodology", Int. J. Fract., 113, 125-151. https://doi.org/10.1023/A:1015563602317
  59. Tang, T., Hededal, O. and Cardiff, P. (2015), "On finite volume method implementation of poro-elasto-plasticity soil model", Int. J. Numer. Anal. Meth. Geomech., 39, 1410-1430. https://doi.org/10.1002/nag.2361.
  60. Taylor, G.A., Bailey, C. and Cross, M. (2003), "A vertex-based finite volume method applied to nonlinear material problems in computational solid mechanics", Int. J. Numer. Meth. Eng., 56, 507-529. https://doi.org/10.1002/nme.574.
  61. Teskeredzic, A., Demirdzic, I. and Muzaferija, S. (2002), "Numerical method for heat transfer, fluid flow, and stress analysis in phase-change problems", Numer. Heat Transf. B, 42, 437-459. https://doi.org/10.1080/10407790190054021.
  62. Teskeredzic, A., Demirdzic, I. and Muzaferija, S. (2015a), "Numerical method for calculation of complete casting process-Part I: Theory", Numer. Heat Transf. B, 48, 295-316. https://doi.org/10.1080/10407790.2015.1033296.
  63. Teskeredzic, A., Demirdzic, I. and Muzaferija, S. (2015b), "Numerical method for calculation of complete casting process-Part II: Validation and application", Numer. Heat Transf. B, 48, 317-335. https://doi.org/10.1080/10407790.2015.1033325.
  64. Tipton, R. (2017), "A brief history of finite element analysis", http://nlsde.com/2017/01/04/ a-brief-history-of-finite-element-analysis/.
  65. Torlak, M., Muzaferija, S. and Peric, M. (2002), "Application of a finite volume method to the computation of interaction between thin linearly elastic structures and incompressible fluid flows", VDI-Berichte 1862, VDI Tagung Fluid-Struktur-Wechselwirkung, Wiesloch.
  66. Tukovic, Z. and Jasak, H. (2007), "Updated Lagrangian finite volume solver for large deformation dynamic response of elastic body", Tran. FAMENA, 31, 55-70.
  67. Tukovic, Z., Ivankovic, A. and Karac, A. (2013), "Finite-volume stress analysis in multi-material linear elastic body", Int. J. Numer. Meth. Eng., 93, 400-419. https://doi.org/10.1002/nme.4390.
  68. Tukovic, Z., Karac, A., Cardiff, P., Jasak, H. and Ivankovic, A. (2018), "OpenFOAM finite volume solver for fluid-solid interaction", Tran. FAMENA, 42, 1-31. https://doi.org/10.21278/TOF.42301.
  69. Turek, S. and Hron, J. (2006), "Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow", Eds. H.J. Bungartz, M. Schafer, Fluid-Structure Interaction, Volume 53 of Lecture Notes in Computational Science and Engineering, Springer, Berlin Heidelberg, 371-385.
  70. Turner, M.J., Clough, R.W., Martin, H.C. and Topp, L.C. (1956), "Stiffness and deflection analysis of complex structures", J. Aeronaut. Sci., 23, 805-823. https://doi.org/10.2514/8.3664
  71. Voler, V.R. (2009), Basic Control Volume Finite Element Methods for Fluids and Solids, World Scientific Publishing Co. Pte. Ltd., London.
  72. Wal, W. (1999), "Fluid-Structur-Interaktionen mit stabilisierten Finiten Elementen", Bericht Nr. 31, Institut fur Baustatik der Universitat Stuttgart.
  73. Zienkiewicz, O.C. and Onate, E. (1991), "Finite volumes vs finite elements. Is there really a choice?", Eds. P. Wriggers, W. Wagner, Nonlinear Computational Mechanics. State of the Art, Springer, Berlin.
  74. Zienkiewicz, O.C., Taylor, R.L. and Nithiarasu, P. (1967), The Finite Element Method for Fluid Dynamics, McGraw-Hill.

Cited by

  1. Thirty Years of the Finite Volume Method for Solid Mechanics vol.28, pp.5, 2020, https://doi.org/10.1007/s11831-020-09523-0