DOI QR코드

DOI QR Code

The application of DGTs for assessing the effectiveness of in situ management of Hg and heavy metal contaminated sediment

  • Bailon, Mark Xavier (Department of Environmental Systems Engineering, Korea University) ;
  • Park, Minoh (Department of Environmental Systems Engineering, Korea University) ;
  • Choi, Young-Gyun (Department of Environmental Engineering, Chungnam National University) ;
  • Reible, Danny (Department of Civil, Environmental, and Construction Engineering, Texas Tech University) ;
  • Hong, Yongseok (Department of Environmental Systems Engineering, Korea University)
  • Received : 2019.08.27
  • Accepted : 2019.10.30
  • Published : 2020.01.25

Abstract

The effectiveness of in situ sediment capping as a technique for heavy metal risk mitigation in Hyeongsan River estuary, South Korea was studied. Sites in the estuary were found previously to show moderate to high levels of contamination of mercury, methylmercury and other heavy metals. A 400 m × 50 m section of the river was selected for a thin layer capping demonstration, where the total area was divided into 4 sections capped with different combinations of capping materials (zeolite, AC/zeolite, AC/sand, zeolite/sand). Pore water concentrations in the different sites were studied using diffusive gradient in thin film (DGT) probes. All capping amendments showed reduction in the pore water concentration of the different heavy metals with top 5 cm showing %reduction greater than 90% for some heavy metals. The relative maxima for the different metals were found to be translated to lower depths with addition of the caps. For two-layered cap with AC, order of placement should be considered since AC can easily be displaced due to its relatively low density. Investigation of methylmercury (MeHg) in the site showed that MeHg and %MeHg in pore water corresponds well with maxima for sulfide, Fe and Mn suggesting mercury methylation as probably coupled with sulfate, Fe and Mn reduction in sediments. Our results showed that thin-layer capping of active sorbents AC and zeolite, in combination with passive sand caps, are potential remediation strategy for sediments contaminated with heavy metals.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea, Korea Environmental Industry and Technology Institute

References

  1. Amato, E. D., Simpson, S. L., Belzunce-Segarra, M. J., Jarolimek, C. V. and Jolley, D. F. (2015), "Metal fluxes from porewaters and labile sediment phases for predicting metal exposure and bioaccumulation in benthic invertebrates", Environ. Sci. Technol., 49(24), 14204-14212. https://doi.org/10.1021/acs.est.5b03655.
  2. Amirbahman, A., Massey, D. I., Lotufo, G., Steenhaut, N., Brown, L. E., Biedenbach, J. M. and Magar, V. S. (2013), "Assessment of mercury bioavailability to benthic macroinvertebrates using diffusive gradients in thin films (DGT)", Environ. Sci. Process. Impacts, 15(11), 2104-2114. https://doi.org/10.1039/C3EM00355H.
  3. Bade R., Oh S. and Shin W. S. (2012). "Diffusive gradients in thin films (DGT) for the prediction of bioavailability of heavy metals in contaminated soils to earthworm (Eisenia foetida) and oral bioavailable concentrations", Sci. Total. Environ., 416, 127-136. https://doi.org/10.1016/j.ecoenv.2012.03.019
  4. Bailon, M. X., David, A. S., Park, Y., Kim, E. and Hong, Y. (2018), "Total mercury, methyl mercury, and heavy metal concentrations in Hyeongsan River and its tributaries in Pohang city, South Korea", Environ. Monitor. Assess., 190(5), 274. https://doi.org/10.1007/s10661-018-6624-4.
  5. Bailon, M. X., Park, M.-o. and Hong, Y. (2019), "Passive sampling methods for assessing the bioaccumulation of heavy metals in sediments", Current Pollution Reports, 5(3), 129-143. https://doi.org/10.1007/s40726-019-00111-w.
  6. Benoit, J. M., Gilmour, C. C. and Mason, R. P. (2001), "The influence of sulfide on solid-phase mercury bioavailability for methylation by pure cultures of Desulfobulbus propionicus (1pr3)", Environ. Sci. Technol., 35(1), 127-132. https://doi.org/10.1021/es001415n.
  7. Casado-Martinez, M. C., Smith, B. D., Luoma, S. N. and Rainbow, P. S. (2010), "Bioaccumulation of arsenic from water and sediment by a deposit-feeding polychaete (Arenicola marina): A biodynamic modelling approach", Aquatic Toxicology, 98(1), 34-43. https://doi.org/10.1016/j.aquatox.2010.01.015.
  8. Cecconi, G. and Maffiotti, A. (2000), "An integrated approach to assess the benthic quality after sediment capping in Venice lagoon AU - Bona, F.", Aquatic Eco. Health. Manage, 3(3), 379-386. https://doi.org/10.1080/14634980008657035.
  9. Chen, C., Amirbahman, A., Fisher, N., Harding, G., Lamborg, C., Nacci, D. and Taylor, D. (2008), "Methylmercury in marine ecosystems: spatial patterns and processes of production, bioaccumulation, and biomagnification", EcoHealth, 5(4), 399-408. https://doi.org/10.1007/s10393-008-0201-1.
  10. Clarisse O., Lotufo G. R., Hintelmann H. and Best E. P. H. (2012). "Biomonitoring and assessment of monomethylmercury exposure in aqueous systems using the DGT technique", Sci. Total. Environ., 416, 449-454. https://doi.org/10.1016/j.scitotenv.2011.11.077.
  11. Davis, A., Bloom, N. S. and Que Hee, S. S. (1997), "The environmental geochemistry and bioaccessibility of mercury in soils and sediments: A review", Risk Analysis, 17(5), 557-569. https://doi.org/10.1111/j.1539-6924.1997.tb00897.x.
  12. Drott, A., Lambertsson, L., Bjorn, E. and Skyllberg, U. (2007), "Importance of dissolved neutral mercury sulfides for methylmercury production in contaminated sediments", Environ. Sci. Technol., 41(7), 2270-2276. https://doi.org/10.1021/es061724z.
  13. Gilmour, C., Bell, T., Soren, A., Riedel, G., Riedel, G., Kopec, D., Bodaly, D. and Ghosh, U. (2018), "Activated carbon thin-layer placement as an in situ mercury remediation tool in a Penobscot River salt marsh", Sci. Total Environ., 621, 839-848. https://doi.org/10.1016/j.scitotenv.2017.11.050.
  14. Gilmour, C. C., Riedel, G. S., Riedel, G., Kwon, S., Landis, R., Brown, S. S., Menzie, C. and Ghosh, U. (2013), "Activated carbon mitigates mercury and methylmercury bioavailability in contaminated sediments", Environ. Sci. Technol., 47(22), 13001-13010. https://doi.org/10.1021/es4021074.
  15. Go, J., Lampert, D. J., Stegemann, J. A. and Reible, D. D. (2009), "Predicting contaminant fate and transport in sediment caps: Mathematical modelling approaches", Appl. Geochem., 24(7), 1347-1353. https://doi.org/10.1016/j.apgeochem.2009.04.025.
  16. Google Maps. (n.d.), Hyeongsan River - Pohang City, South Korea; https://www.google.com/maps/place/Pohang-si,+Gyeongsangbuk-do.
  17. Hammerschmidt, C. R., Fitzgerald, W. F., Lamborg, C. H., Balcom, P. H. and Visscher, P. T. (2004), "Biogeochemistry of methylmercury in sediments of Long Island Sound", Marine Chemistry, 90(1), 31-52. https://doi.org/10.1016/j.marchem.2004.02.024.
  18. Han, J., Ro, H.-M., Cho, K. H. and Kim, K.-W. (2016), "Fluxes of nutrients and trace metals across the sediment-water interface controlled by sediment-capping agents: bentonite and sand", Environ. Monitor. Assess., 188(10), 566. https://doi.org/10.1007/s10661-016-5583-x.
  19. Han, S., Obraztsova, A., Pretto, P., Deheyn, D. D., Gieskes, J. and Tebo, B. M. (2008), "Sulfide and iron control on mercury speciation in anoxic estuarine sediment slurries", Marine Chemistry, 111(3), 214-220. https://doi.org/10.1016/j.marchem.2008.05.002.
  20. Heyes, A., Mason, R. P., Kim, E.-H. and Sunderland, E. (2006), "Mercury methylation in estuaries: Insights from using measuring rates using stable mercury isotopes" Marine Chemistry, 102(1), 134-147. https://doi.org/10.1016/j.marchem.2005.09.018.
  21. Himmelheber, D. W., Taillefert, M., Pennell, K. D. and Hughes, J. B. (2008), "Spatial and temporal evolution of biogeochemical processes following In situ capping of contaminated sediments", Environ. Sci. Technol., 42(11), 4113-4120. https://doi.org/10.1021/es702626x.
  22. Hines, M. E., Faganeli, J., Adatto, I. and Horvat, M. (2006), "Microbial mercury transformations in marine, estuarine and freshwater sediment downstream of the Idrija Mercury Mine, Slovenia", Appl. Geochem., 21(11), 1924-1939. https://doi.org/10.1016/j.apgeochem.2006.08.008
  23. Hong, Y., Dan, N. P., Kim, E., Choi, H.-J. and Han, S. (2014), "Application of diffusive gel-type probes for assessing redox zonation and mercury methylation in the Mekong Delta sediment", Environ. Sci. Process. Impacts, 16(7), 1799-1808. https://doi.org/10.1039/C3EM00728F.
  24. Jacobs, P. and Forstner, U. (2001), "Managing contaminated sediments", J. Soils Sediments, 1(4), 205. https://doi.org/10.1007/BF02987726.
  25. Jacobs, P. H. (2003), "Monitoring of subaqueous depots with active barrier systems for contaminated dredged material using dialysis samplers and DGT probes", J. Soils Sediments, 3(2), 100-107. https://doi.org/10.1007/BF02991075.
  26. Jacobs P. H. and Forstner U. (1999). "Concept of subaqueous capping of contaminated sediments with active barrier systems (ABS) using natural and modified zeolites", Water Research 33(9), 2083-7. https://doi.org/10.1016/S0043-1354(98)00432-1
  27. Kang, K., Lee, C.-G., Choi, J.-W., Kim, Y.-K. and Park, S.-J. (2016), "Evaluation of the Use of Sea Sand, Crushed Concrete, and Bentonite to Stabilize Trace Metals and to Interrupt Their Release from Contaminated Marine Sediments", Water Air Soil Pollut., 227(9), 308. https://doi.org/10.1007/s11270-016-3028-3.
  28. Kim, G. and Jung, W. (2010), "Role of sand capping in phosphorus release from sediment", KSCE J. Civil Eng., 14(6), 815-821. https://doi.org/10.1007/s12205-010-0856-3.
  29. Koh, C. H., Khim, J. S., Kannan, K., Villeneuve, D. L., Senthilkumar, K. and Giesy, J. P. (2004), "Polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) and 2,3,7,8-TCDD equivalents (TEQs) in sediment from the Hyeongsan River, Korea", Environ. Pollut., 132(3), 489-501. https://doi.org/10.1016/j.envpol.2004.05.001.
  30. Mitchell, C. P. J. and Gilmour, C. C. (2008), "Methylmercury production in a Chesapeake Bay salt marsh", J. Geophysical Res. Biogeosci., 113(G2). https://doi.org/10.1029/2008JG000765.
  31. Mohan, D. and Pittman, C. U. (2006), "Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water", J. Hazardous Mater., 137(2), 762-811. https://doi.org/10.1016/j.jhazmat.2006.06.060.
  32. Murphy, P., Marquette, A., Reible, D. and Lowry Gregory, V. (2006), "Predicting the performance of activated carbon-, coke-, and soil-amended thin layer sediment caps", J. Environ. Eng., 132(7), 787-794. https://doi.org/10.1061/(ASCE)0733-9372(2006)132:7(787).
  33. Naylor, C., Davison, W., Motelica-Heino, M., Van Den Berg, G. A. and Van Der Heijdt, L. M. (2004), "Simultaneous release of sulfide with Fe, Mn, Ni and Zn in marine harbour sediment measured using a combined metal/sulfide DGT probe", Sci. Total Environ., 328(1), 275-286. https://doi.org/10.1016/j.scitotenv.2004.02.008.
  34. Ndu U., Christensen G. A., Rivera N. A., Gionfriddo C. M., Deshusses M. A., Elias D. A. and Hsu-Kim H. (2018). "Quantification of mercury bioavailability for methylation using Diffusive Gradient in Thin-Film samplers", Environ. Sci. Technol., 52(15), 8521-8529. https://doi.org/10.1021/acs.est.8b00647
  35. Peng, J. f., Song, Y. h., Yuan, P., Cui, X. y. and Qiu, G. l. (2009), "The remediation of heavy metals contaminated sediment", J. Hazardous Mater., 161(2-3), 633-640. https://doi.org/10.1016/j.jhazmat.2008.04.061.
  36. Pisanello, F., Marziali, L., Rosignoli, F., Poma, G., Roscioli, C., Pozzoni, F. and Guzzella, L. (2016), "In situ bioavailability of DDT and Hg in sediments of the Toce River (Lake Maggiore basin, Northern Italy): accumulation in benthic invertebrates and passive samplers", Environ. Sci. Pollut. Res., 23(11), 10542-10555. https://doi.org/10.1007/s11356-015-5900-x.
  37. Reible, D. D. and Lampert, D. J. (2014), "Capping for Remediation of Contaminated Sediments. In D. D. Reible (Ed.)", Processes, Assessment and Remediation of Contaminated Sediments, Springer, New York, NY, USA. 325-363.
  38. Shi, W.-y., Shao, H.-b., Li, H., Shao, M.-a. and Du, S. (2009), "Progress in the remediation of hazardous heavy metal-polluted soils by natural zeolite", J. Hazardous Mater., 170(1), 1-6. https://doi.org/10.1016/j.jhazmat.2009.04.097.
  39. Silva, H. S., Ruiz, S. V., Granados, D. L. and Santangelo, J. M. (2010), "Adsorption of mercury ( II ) from liquid solutions using modified activated carbon", Materials Research, 13(2), 129-134. https://doi.org/10.1590/S1516-14392010000200003.
  40. Simpson, S. L., Pryor, I. D., Mewburn, B. R., Batley, G. E. and Jolley, D. (2002), "Considerations for Capping Metal-Contaminated Sediments in Dynamic Estuarine Environments", Environ. Sci. Technol., 36(17), 3772-3778. https://doi.org/10.1021/es025632v.
  41. Tan, G., Sun, W., Xu, Y., Wang, H. and Xu, N. (2016), "Sorption of mercury (II) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution", Bioresource Technology, 211, 727-735. https://doi.org/10.1016/j.biortech.2016.03.147.
  42. Teasdale, P. R., Hayward, S. and Davison, W. (1999), "In situ, high-resolution measurement of dissolved sulfide using diffusive gradients in thin films with Computer-Imaging Densitometry", Analytical Chemistry, 71(11), 2186-2191. https://doi.org/10.1021/ac981329u.
  43. USEPA. (1998), Method 1630, Methyl Mercury in Water by Distillation, Aqueous Ethylation, Purge and Trap, and Cold-Vapor Atomic Fluorescence Spectrometry, EPA-821-R-01-020; Office of Water and Office of Science and Technology: Washington, D.C., 1-55.
  44. USEPA (2002), Method 1631, revision E: mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry, United States Environmental Protection Agency, 1-46.
  45. Vaananen, K., Leppanen, M. T., Chen, X. and Akkanen, J. (2018), "Metal bioavailability in ecological risk assessment of freshwater ecosystems: From science to environmental management", Ecotoxicology Environ. Safety, 147, 430-446. https://doi.org/10.1016/j.ecoenv.2017.08.064.
  46. Wang, M., Zhu, Y., Cheng, L., Andserson, B., Zhao, X., Wang, D. and Ding, A. (2017), "Review on utilization of biochar for metal-contaminated soil and sediment remediation", J. Environ. Sci., 63, 156-173. https://doi.org/10.1016/j.jes.2017.08.004.
  47. Widerlund A. and Davison W. (2007). "Size and density distribution of sulfide-producing microniches in lake sediments", Environ. Sci. Technol., 41(23), 8044-8049. https://doi.org/10.1021/es071510x.
  48. Wu Z., Wang S., He M., Zhang L. and Jiao L. (2015). "Element remobilization, "internal P-loading," and sediment-P reactivity researched by DGT (diffusive gradients in thin films) technique", Environ. Sci. Pollut. Res. 22(20), 16173-16183. https://doi.org/10.1016/j.envpol.2011.02.015.
  49. Xiong C., Wang D., Tam N. F., Dai Y., Zhang X., Tang X. and Yang Y. (2018). "Enhancement of active thin-layer capping with natural zeolite to simultaneously inhibit nutrient and heavy metal release from sediments", Ecological Eng., 119, 64-72. https://doi.org/10.1016/j.ecoleng.2018.05.008.
  50. Yin H. and Zhu J. (2016). "In situ remediation of metal contaminated lake sediment using naturally occurring, calcium-rich clay mineral-based low-cost amendment", Chem. Eng. J., 285, 112-120. https://doi.org/10.1016/j.cej.2015.09.108.
  51. Zahir F., Rizwi S. J., Haq S. K. and Khan R. H. (2005). "Low dose mercury toxicity and human health", Environ. Toxicology Pharmacology, 20(2), 351-360. https://doi.org/10.1016/j.etap.2005.03.007.
  52. Zhang C., Ding S., Xu D., Tang Y. and Wong M. H. (2014a). "Bioavailability assessment of phosphorus and metals in soils and sediments: A review of diffusive gradients in thin films (DGT)", Environ. Monitor. Assess., 186(11), 7367-7378. https://doi.org/10.1007/s10661-014-3933-0.
  53. Zhang C., Yu Z.-g., Zeng G.-m., Jiang M., Yang Z.-z., Cui F., Zhu M.-y., Shen L.-q. and Hu L. (2014b). "Effects of sediment geochemical properties on heavy metal bioavailability", Environ. International, 73, 270-281. https://doi.org/10.1016/j.envint.2014.08.010.
  54. Zhang C., Zhu M.-y., Zeng G.-m., Yu Z.-g., Cui F., Yang Z.-z. and Shen L.-q. (2016). "Active capping technology: A new environmental remediation of contaminated sediment", Environ. Sci. Pollut. Res., 23(5), 4370-4386. https://doi.org/10.1007/s11356-016-6076-8.
  55. Zhang H. and Davison W. (1995). "Performance characteristics of Diffusion Gradients in Thin Films for the in situ measurement of trace metals in aqueous solution", Analytical Chemistry, 67(19), 3391-3400. https://doi.org/10.1021/ac00115a005.
  56. Zoumis T., Schmidt A., Grigorova L. and Calmano W. (2001). "Contaminants in sediments: Remobilisation and demobilisation", Sci. Total. Environ., 266(1), 195-202. https://doi.org/10.1016/S0048-9697(00)00740-3.