DOI QR코드

DOI QR Code

Development of eco-friendly concrete produced with Rice Husk Ash (RHA) based geopolymer

  • Annadurai, Shalini (Department of Civil Engineering, Sona College of Technology) ;
  • Rathinam, Kumutha (Department of Civil Engineering, Sri Venkateswara College of Engineering) ;
  • Kanagarajan, Vijai (Department of Civil Engineering, St. Joseph's College of Engineering)
  • 투고 : 2019.08.11
  • 심사 : 2019.11.27
  • 발행 : 2020.02.25

초록

This paper reports the effect of Rice Husk Ash (RHA) in geopolymer concrete on strength, durability and microstructural properties under ambient curing at a room temperature of 25℃ and 65±5% relative humidity. Rice husk was incinerated at 800℃ in a hot air oven. and ground in a ball mill to achieve the required fineness. RHA was partially added in 10, 15, 20, 25, 30 and 35 percentages to fly ash with 10% of GGBS to produce geopolymer concrete. Test results exhibit that the substitution of RHA in geopolymer concrete resulted in reduced strength properties during initial curing. In the initial stage, workability of GPC mixes was affected by RHA particles due to the presence of dormant particles in it. It is evident from the microstructural study that the presence of RHA particles densifies the matrix reducing porosity in concrete. This is due to the presence of RHA in geopolymer concrete, which affects the ratio of silica and alumina, resulting in polycondensation reactions products. This study suggests that incorporation of rice husk ash in geopolymer concrete is the solution for effective utilization of waste materials and prevention of environmental pollution due to the dumping of industrial waste and to produce eco-friendly concrete.

키워드

참고문헌

  1. ASTM D3682-01(2006), Standard Test Method for Major and Minor Elements in Combustion Residues from Coal Utilization Processes, American Society for Testing and Materials. USA.
  2. Bakharev, T., Sanjayan, J.G. and Cheng, Y.B. (1999), "Alkali activation of Australian slag cements", Cement Concrete Res., 29(1), 113-120. https://doi.org/10.1016/S0008-8846(98)00170-7.
  3. Borges, P.H.R., Lourenço, T.M. de F., Foureaux, A.F.S. and Pacheco, L.S. (2014), "Estudo comparative da analise de ciclo de vida de concretos geopolimericos e de concretos a base de cimento Portland composto (CP II)", Ambient. Construido, 14(2), 153-168. https://doi.org/10.1590/s1678- 86212014000200011.
  4. Cordeiro, G.C., Toledo Filho, R.D. and De Moraes Rego Fairbairn, E. (2009), "Use of ultrafine rice husk ash with high-carbon content as pozzolan in high performance concrete", Mater. Struct. Constr., 42(7), 983-992. https://doi.org/10.1617/s11527-008-9437-z.
  5. Davidovits, J. (1991), "Geopolymer-Inorganic polymeric new materials". J. Therm. Anal., 37(8), 1633-1656. https://doi.org/10.1007/BF01912193.
  6. Davidovits, J. (2005), "Geopolymer chemistry and sustainable development. The poly(sialate) trminology: a very useful and simple model for the promotion and understanding of green-chemistry", Proceedings of Geopolymer, Green Chemistry and Sustainable Development Solutions, Institut Geopolymere, Saint-Quentin, 9-15.
  7. de Sensale, G.R. (2006), "Strength development of concrete with rice-husk ash", Cement Concrete Compos., 28(2), 158-160. https://doi.org/10.1016/j.cemconcomp.2005.09.005.
  8. De Vargas, A.S., Dal Molin, D.C.C., Vilela, A.C.F., Silva, F.J. Da, Pavao, B. and Veit, H. (2011), "The effects of $Na_2O/SiO_2$ molar ratio, curing temperature and age on compressive strength, morphology and microstructure of alkali-activated fly ash-based geopolymers". Cement Concrete Compos., 33(6), 653-660. https://doi.org/10.1016/j.cemconcomp.2011.03.006.
  9. Deja, J. (2002), "Carbonation aspects of alkali activated slag mortars and concretes", Silicates Industriels, 67(1), 37-42.
  10. Duxson, P., Fernández-Jiménez, A., Provis, J.L., Lukey, G.C., Palomo, A. and Van Deventer, J.S.J. (2007), "Geopolymer technology: The current state of the art", J. Mater. Sci., 42(9), 2917-2933. https://doi.org/10.1007/s10853-006-0637-z.
  11. Duxson, P., Provis, J.L., Lukey, G.C., Mallicoat, S.W., Kriven, W.M. and Van Deventer, J.S.J. (2005), "Understanding the relationship between geopolymer composition, microstructure and mechanical properties", Coll. Surf. A Physicochem. Eng. Asp., 269(1-3), 47-58. https://doi.org/10.1016/j.colsurfa.2005.06.060.
  12. Fan, F. (2015), "Mechanical and thermal properties of fly ash-based geopolymer cement". M.Sc. Thesis, Agricultural and Mechanical College, Louisiana State Univetsity.
  13. Ganesan, N., Abraham, R. and Deepa Raj, S. (2015), "Durability characteristics of steel fibre reinforced geopolymer concrete", Constr. Build. Mater., 93, 471-476. https://doi.org/10.1016/j.conbuildmat.2015.06.014.
  14. Ganesan, N., Abraham, R., Deepa Raj, S. and Sasi, D. (2014), "Stress-strain behaviour of confined Geopolymer concrete", Constr. Build. Mater., 73, 326-331. https://doi.org/10.1016/j.conbuildmat.2014.09.092.
  15. Ganesan, N., Indira, P.V. and Santhakumar, A. (2013), "Engineering properties of steel fibre reinforced geopolymer concrete". Adv Concete Constr., 1(4), 305-318. https://doi.org/10.12989/acc2013.1.4.305.
  16. Geraldo, R.H., Fernandes, L.F.R. and Camarini, G. (2017), "Water treatment sludge and rice husk ash to sustainable geopolymer production", J. Clean. Prod., 149, 146-155. https://doi.org/10.1016/j.jclepro.2017.02.076.
  17. Hart, R., Lowe, J., Southam, D., Perera, D. and Wal, P. (2006), "Aluminosilicate inorganic polymers from waste material, In Green Processing 2006", 3rd Int. Conf. on the Sustainable Processing of Minerals, Carlton, VIC, Australia.
  18. IS 1199:1959, Methods of Sampling and Analysis of Concrete, Bureau of Indian standards, New Delhi, India.
  19. IS 12089:19887, Specification for Granulated Slag for the Manufacture of Portland Slag Cement, Bureau of Indian standards, New Delhi, India.
  20. IS 2386: 1963 (Part-I), Methods of Test for Aggregates for Concrete, Bureau of Indian standards, New Delhi, India.
  21. IS 2770:1967 (Part I), Methods of Testing Bond in Reinforced Concrete, Bureau of Indian standards, New Delhi, India.
  22. IS 3812:2003, Specification for Fly Ash for Use as Pozzolana and Admixture, Bureau of Indian Standards, New Delhi, India.
  23. IS 516: 1959, Method of Test for Strength of Concrete, Reaffirmed 2004, Bureau of Indian standards, New Delhi, India.
  24. IS 5816:1999, Indian Standard Method of Test for Splitting Tensile Strength of Concrete, New Delhi, India.
  25. Khan, R., Jabbar, A., Ahmad, I., Khan, W., Khan, A.N. and Mirza, J. (2012), "Reduction in environmental problems using rice-husk ash in concrete", Constr. Build. Mater., 30, 360-365. https://doi.org/10.1016/j.conbuildmat.2011.11.028.
  26. Kusbiantoro, A., Nuruddin, M.F., Shafiq, N. and Qazi, S.A. (2012), "The effect of microwave incinerated rice husk ash on the compressive and bond strength of fly ash based geopolymer concrete", Constr. Build. Mater., 36, 695-703. https://doi.org/10.1016/j.conbuildmat.2012.06.064.
  27. Law, D.W., Adam, A.A., Molyneaux, T.K., Patnaikuni, I. and Wardhono, A. (2014), "Long term durability properties of class F fly ash geopolymer concrete", Mater. Struct. Constr., 48(3), 721-731. https://doi.org/10.1617/s11527-014-0268-9.
  28. Liu, M.Y.J., Chua, C.P., Alengaram, U.J. and Jumaat, M.Z. (2014), "Utilization of palm oil fuel ash as binder in lightweight oil palm shell geopolymer concrete", Adv. Mater. Sci. Eng., 2014, Article ID 610274, 6. https://doi.org/10.1155/2014/610274.
  29. Lloyd, R.R., Provis, J.L. and Van Deventer, J.S.J. (2010), "Pore solution composition and alkali diffusion in inorganic polymer cement", Cement Concrete Res., 40(9), 1386-1392. https://doi.org/10.1016/j.cemconres.2010.04.008.
  30. Matthes, W., Vollpracht, A., Villagrán, Y., Kamali-Bernard, S., Hooton, D., Gruyaert, E. and De Belie, N. (2018), "Ground granulated blast-furnace slag", RILEM State-of-the-Art Reports, 25, 1-53. https://doi.org/10.1007/978-3-319-70606-1_1.
  31. Mehta, P.K. (1977), "Properties of blended cements made from rice husk ash", J. Am. Concrete Inst., 74(9), 440-452. https://doi.org/10.14359/11022.
  32. Mehta, P.K. (1994), "Highly durable cement products containing siliceous ashes", United States Patent Number 5, 346, 548. USA, 15.
  33. Nath, P., Sarker, P.K. and Rangan, V.B. (2015), "Early age properties of low-calcium fly ash geopolymer concrete suitable for ambient curing", Procedia Eng., 125, 601-607. https://doi.org/10.1016/j.proeng.2015.11.077.
  34. Nazari, A., Bagheri, A. and Riahi, S. (2011), "Properties of geopolymer with seeded fly ash and rice husk bark ash", Mater. Sci. Eng. A, 528(24), 7395-7401. https://doi.org/10.1016/j.msea.2011.06.027.
  35. Patel, Y.J. and Shah, N. (2018), "Development of self-compacting geopolymer concrete as a sustainable construction material", Sustain. Envir. Res., 28(6), 412-421. https://doi.org/10.1016/j.serj.2018.08.004.
  36. Prabu, B., Kumutha, R. and Vijai, K. (2017), "Effect of fibers on the mechanical properties of fly ash and GGBS based geopolymer concrete under different curing conditions", Ind. J. Eng. Mater. S., 24(1), 5-12.
  37. Puertas, F., Fernandez-Jimenez, A. and Blanco-Varela, M.T. (2004), "Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicatehydrate", Cement Concrete Res., 34(1), 139-148. https://doi.org/10.1016/S0008-8846(03)00254-0.
  38. Ramasamy, V. (2012), "Compressive strength and durability properties of Rice Husk Ash concrete", KSCE J. Civil Eng., 16(1), 93-102. https://doi.org/10.1007/s12205-012-0779-2.
  39. Rice Market Monitor, Vol. XII-Issue No. 4; December 2009.
  40. RILEM committee 73-SBC (1988), "Final report: siliceous by-products for use in concrete". Mater. Struct. Constr., 21(121), 69-80. https://doi.org/10.1007/BF02472530.
  41. Shi, C., Krivenko, P.V. and Roy, D.M. (2006), Alkali Activated Cement Concretes, Taylor and Francis, Abingdon.
  42. Song, S. and Jennings, H.M. (1999), "Pore solution chemistry of alkali-activated ground", Cement Concrete Res., 29, 159-170. https://doi.org/10.1016/S0008-8846(98)00212-9
  43. Van Jaarsveld, J.G.S., Van Deventer, J.S.J. and Lorenzen, L. (1997), "The potential use of geopolymeric materials to immobilise toxic metals: Part I. Theory and applications", Mine. Eng., 10(7), 659-669. https://doi.org/10.1016/S0892-6875(97)00046-0.
  44. Venkatesan, R.P. and Pazhani, K.C. (2016), "Strength and durability properties of geopolymer concrete made with Ground Granulated Blast Furnace Slag and Black Rice Husk Ash", KSCE J. Civil Eng., 20(6), 2384-2391. https://doi.org/10.1007/s12205-015-0564-0.
  45. Wallah, S.E. and Rangan, B.V. (2006), "Low-calcium fly ash-based geopolymer concrete: Long-term properties", Research Report GC 2, Faculty of Engineering, Curtin University of Technology, Western Australia.
  46. Yang, K.H., Jung, Y.B., Cho, M.S. and Tae, S.H. (2016), "Effect of supplementary cementitious materials on reduction of $CO_2$ emissions from concrete", Handbook of Low Carbon Concrete, 2, 89-110. https://doi.org/10.1016/B978-0-12-804524-4.00005-1.
  47. Zabihi, S.M., Tavakoli, H. and Mohseni, E. (2018), "Engineering and microstructural properties of fiber-reinforced rice Husk-Ash based geopolymer concrete", J. Mater. Civil Eng., 30(8), 04018183. https://doi.org/10.1061/(asce)mt.1943-5533.0002379.
  48. Zerbino, R., Giaccio, G., Batic, O.R. and Isaia, G.C. (2012), "Alkali-silica reaction in mortars and concretes incorporating natural rice husk ash", Constr. Build. Mater., 36, 796-806. https://doi.org/10.1016/j.conbuildmat.2012.04.049.

피인용 문헌

  1. Properties and durability of concrete with olive waste ash as a partial cement replacement vol.11, pp.1, 2020, https://doi.org/10.12989/acc.2021.11.1.059
  2. Predictive modeling of the compressive strength of bacteria-incorporated geopolymer concrete using a gene expression programming approach vol.27, pp.4, 2020, https://doi.org/10.12989/cac.2021.27.4.319