DOI QR코드

DOI QR Code

Ginseng for an eye: effects of ginseng on ocular diseases

  • Kim, Jisu (College of Pharmacy, Chung-Ang University) ;
  • Han, Su-Young (College of Pharmacy, Chung-Ang University) ;
  • Min, Hyeyoung (College of Pharmacy, Chung-Ang University)
  • Received : 2018.08.10
  • Accepted : 2018.11.26
  • Published : 2020.01.15

Abstract

The sense of vision is the primary means by which we gather information from our surroundings, and vision loss, therefore, severely compromises the life of the affected individuals, their families, and society. Loss of vision becomes more frequent with age, and diabetic retinopathy, age-related macular degeneration, cataracts, and glaucoma are the major causes of vision impairment. To find active pharmacological compounds that might prevent or ameliorate the vision-threatening eye diseases, numerous studies have been performed, and some botanical compounds, including those extracted from ginseng, have been shown to possess beneficial effects in the treatment or prevention of common ocular diseases. In this review, we summarize the recent reports investigating the therapeutic effects of ginseng and ginsenosides on diverse ocular diseases and discuss their therapeutic potential.

Keywords

References

  1. West SK, Munoz B, Rubin GS, Schein OD, Bandeen-Roche K, Zeger S, German S, Fried LP. Function and visual impairment in a population-based study of older adults. The SEE project. Salisbury Eye Evaluation. Invest Ophthalmol Vis Sci 1997;38:72-82.
  2. Klein R, Klein BE, Lee KE, Cruickshanks KJ, Gangnon RE. Changes in visual acuity in a population over a 15-year period: the beaver dam eye study. Am J Ophthalmol 2006;142:539-49. https://doi.org/10.1016/j.ajo.2006.06.015
  3. Lin JB, Tsubota K, Apte RS. A glimpse at the aging eye. NPJ Aging Mech Dis 2016;2:16003. https://doi.org/10.1038/npjamd.2016.3
  4. Butler MS. The role of natural product chemistry in drug discovery. J Nat Prod 2004;67:2141-53. https://doi.org/10.1021/np040106y
  5. Mathur S, Hoskins C. Drug development: lessons from nature. Biomed Rep 2017;6:612-4. https://doi.org/10.3892/br.2017.909
  6. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 1971;93:2325-7. https://doi.org/10.1021/ja00738a045
  7. Chang Z. The discovery of Qinghaosu (artemisinin) as an effective anti-malaria drug: a unique China story. Sci China Life Sci 2016;59:81-8. https://doi.org/10.1007/s11427-015-4988-z
  8. Lu JM, Yao Q, Chen C. Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr Vasc Pharmacol 2009;7:293-302. https://doi.org/10.2174/157016109788340767
  9. Chang WH, Tsai YL, Huang CY, Hsieh CC, Chaunchaiyakul R, Fang Y, Lee SD, Kuo CH. Null effect of ginsenoside Rb1 on improving glycemic status in men during a resistance training recovery. J Int Soc Sports Nutr 2015;12:34. https://doi.org/10.1186/s12970-015-0095-6
  10. Chen JC, Chen LD, Tsauer W, Tsai CC, Chen BC, Chen YJ. Effects of Ginsenoside Rb2 and Rc on inferior human sperm motility in vitro. Am J Chin Med 2001;29:155-60. https://doi.org/10.1142/s0192415x01000174
  11. Lu P, Su W, Miao ZH, Niu HR, Liu J, Hua QL. Effect and mechanism of ginsenoside Rg3 on postoperative life span of patients with non-small cell lung cancer. Chin J Integr Med 2008;14:33-6. https://doi.org/10.1007/s11655-007-9002
  12. Chen ZJ, Cheng J, Huang YP, Han SL, Liu NX, Zhu GB, Yao JG. [Effect of adjuvant chemotherapy of ginsenoside Rg3 combined with mitomycin C and tegafur in advanced gastric cancer]. Zhonghua Wei Chang Wai Ke Za Zhi 2007;10:64-6.
  13. Sun Y, Lin H, Zhu Y, Feng J, Chen Z, Li G, Zhang X, Zhang Z, Tang J, Shi M, et al. A randomized, prospective, multi-centre clinical trial of NP regimen (vinorelbine+cisplatin) plus Gensing Rg3 in the treatment of advanced non-small cell lung cancer patients. Zhongguo Fei Ai Za Zhi 2006;9:254-8.
  14. Li Y, Wang Y, Niu K, Chen X, Xia L, Lu D, Kong R, Chen Z, Duan Y, Sun J. Clinical benefit from EGFR-TKI plus ginsenoside Rg3 in patients with advanced nonsmall cell lung cancer harboring EGFR active mutation. Oncotarget 2016;7:70535-45. https://doi.org/10.18632/oncotarget.12059
  15. Huynh TP, Mann SN, Mandal NA. Botanical compounds: effects on major eye diseases. Evid Based Complement Alternat Med 2013;2013:549174.
  16. McCaa CS. The eye and visual nervous system: anatomy, physiology and toxicology. Environ Health Perspect 1982;44:1-8. https://doi.org/10.1289/ehp.82441
  17. Chen SY, Yu HC, Wang IJ, Sun CK. Infrared-based third and second harmonic generation imaging of cornea. J Biomed Opt 2009;14:044012. https://doi.org/10.1117/1.3183805
  18. Beebe DC. Development of the ciliary body: a brief review. Trans Ophthalmol Soc U K 1986;105(Pt 2):123-30.
  19. Malhotra A, Minja FJ, Crum A, Burrowes D. Ocular anatomy and crosssectional imaging of the eye. Semin Ultrasound CT MR 2011;32:2-13. https://doi.org/10.1053/j.sult.2010.10.009
  20. Willoughby CE, Ponzin D, Ferrari S, Lobo A, Landau K, Omidi Y. Anatomy and physiology of the human eye: effects of mucopolysaccharidoses disease on structure and functionea review. Clin Exp Ophthalmol 2010;38:2-11.
  21. Smerdon D. Anatomy of the eye and orbit. Trends Anaesthesia Crit Care 2000;11:286-92. https://doi.org/10.1054/cacc.2000.0296
  22. Fuhrmann S, Zou C, Levine EM. Retinal pigment epithelium development, plasticity, and tissue homeostasis. Exp Eye Res 2014;123:141-50. https://doi.org/10.1016/j.exer.2013.09.003
  23. Jonas JB, Schneider U, Naumann GO. Count and density of human retinal photoreceptors. Graefes Arch Clin Exp Ophthalmol 1992;230:505-10. https://doi.org/10.1007/BF00181769
  24. Brzezinski JA, Reh TA. Photoreceptor cell fate specification in vertebrates. Development 2015;142:3263-73. https://doi.org/10.1242/dev.127043
  25. Skeie JM, Roybal CN, Mahajan VB. Proteomic insight into the molecular function of the vitreous. PLoS One 2015;10:e0127567. https://doi.org/10.1371/journal.pone.0127567
  26. Booij JC, Baas DC, Beisekeeva J, Gorgels TG, Bergen AA. The dynamic nature of Bruch's membrane. Prog Retin Eye Res 2010;29:1-18. https://doi.org/10.1016/j.preteyeres.2009.08.003
  27. Lee CJ, Vroom JA, Fishman HA, Bent SF. Determination of human lens capsule permeability and its feasibility as a replacement for Bruch's membrane. Biomaterials 2006;27:1670-8. https://doi.org/10.1016/j.biomaterials.2005.09.008
  28. Mathenge W. Age-related macular degeneration. Commun Eye Health 2014;27:49-50.
  29. Kaarniranta K, Machalinska A, Vereb Z, Salminen A, Petrovski G, Kauppinen A. Estrogen signalling in the pathogenesis of age-related macular degeneration. Curr Eye Res 2015;40:226-33. https://doi.org/10.3109/02713683.2014.925933
  30. Salminen A, Kauppinen A, Hyttinen JM, Toropainen E, Kaarniranta K. Endoplasmic reticulum stress in age-related macular degeneration: trigger for neovascularization. Mol Med 2010;16:535-42. https://doi.org/10.2119/molmed.2010.00070
  31. Lee Y, Hussain AA, Seok JH, Kim SH, Marshall J. Modulating the transport characteristics of Bruch's membrane with steroidal glycosides and its relevance to Age-Related Macular Degeneration (AMD). Invest Ophthalmol Vis Sci 2015;56:8403-18. https://doi.org/10.1167/iovs.15-16936
  32. Strauss O. The retinal pigment epithelium in visual function. Physiol Rev 2005;85:845-81. https://doi.org/10.1152/physrev.00021.2004
  33. Betts BS, Parvathaneni K, Yendluri BB, Grigsby J, Tsin AT. Ginsenoside-Rb1 induces ARPE-19 proliferation and reduces VEGF release. ISRN Ophthalmol 2011;2011:184295. https://doi.org/10.5402/2011/184295
  34. Moreau KL, King JA. Protein misfolding and aggregation in cataract disease and prospects for prevention. Trends Mol Med 2012;18:273-82. https://doi.org/10.1016/j.molmed.2012.03.005
  35. Bloemendal H, de Jong W, Jaenicke R, Lubsen NH, Slingsby C, Tardieu A. Ageing and vision: structure, stability and function of lens crystallins. Prog Biophys Mol Biol 2004;86:407-85. https://doi.org/10.1016/j.pbiomolbio.2003.11.012
  36. Truscott RJ, Friedrich MG. The etiology of human age-related cataract. Proteins don't last forever. Biochim Biophys Acta 2016;1860:192-8. https://doi.org/10.1016/j.bbagen.2015.08.016
  37. Kim WY, Kim JM, Han SB, Lee SK, Kim ND, Park MK, Kim CK, Park JH. Steaming of ginseng at high temperature enhances biological activity. J Nat Prod 2000;63:1702-4. https://doi.org/10.1021/np990152b
  38. Lee H, Kim J, Lee SY, Park JH, Hwang GS. Processed Panax ginseng, Sun ginseng, decreases oxidative damage induced by tert-butyl hydroperoxide via regulation of antioxidant enzyme and anti-apoptotic molecules in HepG2 cells. J Ginseng Res 2012;36:248-55. https://doi.org/10.5142/jgr.2012.36.3.248
  39. Song KC, Chang TS, Lee H, Kim J, Park JH, Hwang GS. Processed Panax ginseng, Sun ginseng increases type I collagen by regulating MMP-1 and TIMP-1 expression in human dermal fibroblasts. J Ginseng Res 2012;36:61-7. https://doi.org/10.5142/jgr.2012.36.1.61
  40. Lee SM, Sun JM, Jeong JH, Kim MK, Wee WR, Park JH, Lee JH. Analysis of the effective fraction of Sun ginseng extract in selenite induced cataract rat model. J Korean Ophthalmol Soc 2010;51:733-9. https://doi.org/10.3341/jkos.2010.51.5.733
  41. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 2006;90:262-7. https://doi.org/10.1136/bjo.2005.081224
  42. Prum BE, Lim MC, Mansberger SL, Stein JD, Moroi SE, Gedde SJ, Herndon LW, Rosenberg LF, Williams RD. Primary open-angle glaucoma suspect preferred practice pattern((R)) guidelines. Ophthalmology 2016;123:P112-51.
  43. Doozandeh A, Yazdani S. Neuroprotection in glaucoma. J Ophthalmic Vis Res 2016;11:209-20. https://doi.org/10.4103/2008-322X.183923
  44. Bae HW, Kim JH, Kim S, Kim M, Lee N, Hong S, Seong GJ, Kim CY. Effect of Korean Red Ginseng supplementation on dry eye syndrome in glaucoma patients - a randomized, double-blind, placebo-controlled study. J Ginseng Res 2015;39:7-13. https://doi.org/10.1016/j.jgr.2014.07.002
  45. Wang L, Cao T, Chen H. Treatment of glaucomatous optic nerve damage using ginsenoside Rg1 mediated by ultrasound targeted microbubble destruction. Exp Ther Med 2018;15:300-4.
  46. Engelgau MM, Geiss LS, Saaddine JB, Boyle JP, Benjamin SM, Gregg EW, Tierney EF, Rios-Burrows N, Mokdad AH, Ford ES, et al. The evolving diabetes burden in the United States. Ann Intern Med 2004;140:945-50. https://doi.org/10.7326/0003-4819-140-11-200406010-00035
  47. Tarr JM, Kaul K, Chopra M, Kohner EM, Chibber R. Pathophysiology of diabetic retinopathy. ISRN Ophthalmol 2013;2013:343560. https://doi.org/10.1155/2013/343560
  48. Das A. Diabetic retinopathy: battling the global epidemic. Invest Ophthalmol Vis Sci 2016;57:6669-82. https://doi.org/10.1167/iovs.16-21031
  49. Sun HQ, Zhou ZY. Effect of ginsenoside-Rg3 on the expression of VEGF and $TNF-{\alpha}$ in retina with diabetic rats. Int J Ophthalmol 2010;3:220-3. https://doi.org/10.3980/j.issn.2222-3959.2010.03.09
  50. Maeng YS, Maharjan S, Kim JH, Park JH, Suk Yu Y, Kim YM, Kwon YG. Rk1, a ginsenoside, is a new blocker of vascular leakage acting through actin structure remodeling. PLoS One 2013;8:e68659. https://doi.org/10.1371/journal.pone.0068659
  51. Wang DD, Zhu HZ, Li SW, Yang JM, Xiao Y, Kang QR, Li CY, Zhao YS, Zeng Y, Li Y, et al. Crude saponins of Panax notoginseng have neuroprotective effects to inhibit palmitate-triggered endoplasmic reticulum stress-associated apoptosis and loss of postsynaptic proteins in staurosporine differentiated RGC-5 retinal ganglion cells. J Agric Food Chem 2016;64:1528-39. https://doi.org/10.1021/acs.jafc.5b05864
  52. Fan Y, Qiao Y, Huang J, Tang M. Protective effects of Panax notoginseng saponins against high glucose-induced oxidative injury in rat retinal capillary endothelial cells. Evid Based Complement Alternat Med 2016;2016:5326382.
  53. Fan C, Qiao Y, Tang M. Notoginsenoside R1 attenuates high glucose-induced endothelial damage in rat retinal capillary endothelial cells by modulating the intracellular redox state. Drug Des Devel Ther 2017;11:3343-54. https://doi.org/10.2147/DDDT.S149700
  54. Jian W, Yu S, Tang M, Duan H, Huang J. A combination of the main constituents of Fufang Xueshuantong Capsules shows protective effects against streptozotocininduced retinal lesions in rats. J Ethnopharmacol 2016;182:50-6. https://doi.org/10.1016/j.jep.2015.11.021
  55. Lian F, Wu L, Tian J, Jin M, Zhou S, Zhao M, Wei L, Zheng Y, Wang Y, Zhang M, et al. The effectiveness and safety of a danshen-containing Chinese herbal medicine for diabetic retinopathy: a randomized, double-blind, placebocontrolled multicenter clinical trial. J Ethnopharmacol 2015;164:71-7. https://doi.org/10.1016/j.jep.2015.01.048
  56. Gao D, Guo Y, Li X, Li Z, Xue M, Ou Z, Liu M, Yang M, Liu S, Yang S. An aqueous extract of Radix Astragali, Angelica sinensis, and Panax notoginseng is effective in preventing diabetic retinopathy. Evid Based Compl Alternat Med 2013;2013:578165.
  57. Sen S, Chen S, Wu Y, Feng B, Lui EK, Chakrabarti S. Preventive effects of North American ginseng (Panax quinquefolius) on diabetic retinopathy and cardiomyopathy. Phytother Res 2013;27:290-8. https://doi.org/10.1002/ptr.4719
  58. Kim SH, Jung SH, Lee YJ, Han JY, Choi YE, Hong HD, Jeon HY, Hwang J, Na S, Kim YM, et al. Dammarenediol-ii prevents VEGF-mediated microvascular permeability in diabetic mice. Phytother Res 2015;29:1910-6. https://doi.org/10.1002/ptr.5480
  59. Yang H, Son GW, Park HR, Lee SE, Park YS. Effect of Korean Red Ginseng treatment on the gene expression profile of diabetic rat retina. J Ginseng Res 2016;40:1-8. https://doi.org/10.1016/j.jgr.2015.03.003

Cited by

  1. SQUAMOSA Promoter Binding Protein-Like ( SPL ) Gene Family: TRANSCRIPTOME-Wide Identification, Phylogenetic Relationship, Expression Patterns and Network Interaction Analysis in Panax ginseng C. A. vol.9, pp.3, 2020, https://doi.org/10.3390/plants9030354
  2. Anticancer Activities of Ginsenosides, the Main Active Components of Ginseng vol.2021, 2021, https://doi.org/10.1155/2021/8858006