DOI QR코드

DOI QR Code

Ginsenoside Rb1 exerts neuroprotective effects through regulation of Lactobacillus helveticus abundance and GABAA receptor expression

  • Chen, Huimin (Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University) ;
  • Shen, Jiajia (Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University) ;
  • Li, Haofeng (Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University) ;
  • Zheng, Xiao (Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University) ;
  • Kang, Dian (Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University) ;
  • Xu, Yangfan (Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University) ;
  • Chen, Chong (Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University) ;
  • Guo, Huimin (Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University) ;
  • Xie, Lin (Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University) ;
  • Wang, Guangji (Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University) ;
  • Liang, Yan (Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University)
  • Received : 2018.01.30
  • Accepted : 2018.09.11
  • Published : 2020.01.15

Abstract

Background: Ginsenoside Rb1 (Rb1), one of the most abundant protopanaxadiol-type ginsenosides, exerts excellent neuroprotective effects even though it has low intracephalic exposure. Purpose: The present study aimed to elucidate the apparent contradiction between the pharmacokinetics and pharmacodynamics of Rb1 by studying the mechanisms underlying neuroprotective effects of Rb1 based on regulation of microflora. Methods: A pseudo germ-free (PGF) rat model was established, and neuroprotective effects of Rb1 were compared between conventional and PGF rats. The relative abundances of common probiotics were quantified to reveal the authentic probiotics that dominate in the neuroprotection of Rb1. The expressions of the gamma-aminobutyric acid (GABA) receptors, including GABAA receptors (α2, β2, and γ2) and GABAB receptors (1b and 2), in the normal, ischemia/reperfusion (I/R), and I/R+Rb1 rat hippocampus and striatum were assessed to reveal the neuroprotective mechanism of Rb1. Results: The results showed that microbiota plays a key role in neuroprotection of Rb1. The relative abundance of Lactobacillus helveticus (Lac.H) increased 15.26 fold after pretreatment with Rb1. I/R surgery induced effects on infarct size, neurological deficit score, and proinflammatory cytokines (IL-1β, IL-6, and TNF-α) were prevented by colonizing the rat gastrointestinal tract with Lac.H (1 × 109 CFU) by gavage 15 d before I/R surgery. Both Rb1 and Lac.H upregulated expression of GABA receptors in I/R rats. Coadministration of a GABAA receptor antagonist significantly attenuated neuroprotective effects of Rb1 and Lac.H. Conclusion: In sum, Rb1 exerts neuroprotective effects by regulating Lac.H and GABA receptors rather than through direct distribution to the target sites.

Keywords

References

  1. McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Loso T, Douglas AE, Dubilier N, Eberl G, Fukami T, Gilbert SF, et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA 2013;110:3229-36. https://doi.org/10.1073/pnas.1218525110
  2. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. Diversity of the human intestinal microbial flora. Science 2005;308:1635-8. https://doi.org/10.1126/science.1110591
  3. Shin SC, Kim SH, You H, Kim B, Kim AC, Lee KA, Yoon JH, Ryu JH, Lee WJ. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 2011;334:670-4. https://doi.org/10.1126/science.1212782
  4. Mazzoli R, Pessione E. The neuro-endocrinological role of microbial glutamate and GABA signaling. Front Microbiol 2016;7:1934.
  5. Chimerel C, Emery E, Summers DK, Keyser U, Gribble FM, Reimann F. Reimann. Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell Rep 2014;9:1202-8. https://doi.org/10.1016/j.celrep.2014.10.032
  6. Cryan JF, O'Mahony SM. The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol Motil 2011;23:187-92. https://doi.org/10.1111/j.1365-2982.2010.01664.x
  7. Al-Asmakh M, Anuar F, Zadjali F, Rafter J, Pettersson S. Gut microbial communities modulating brain development and function. Gut Microbes 2012;3:366-73. https://doi.org/10.4161/gmic.21287
  8. Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol 2009;6:306-14. https://doi.org/10.1038/nrgastro.2009.35
  9. Lyte M. Microbial endocrinology in the microbiome-gut-brain axis: how bacterial production and utilization of neurochemicals influence behavior. PLoS Pathog 2013;9. e1003726. https://doi.org/10.1371/journal.ppat.1003726
  10. Maqsood R, Stone TW. The gut-brain axis, BDNF, NMDA and CNS disorders. Neurochem Res 2016;41:2819-35. https://doi.org/10.1007/s11064-016-2039-1
  11. Tse JKY. Gut microbiota, nitric oxide and microglia as pre-requisites for neurodegenerative disorders. ACS Chem Neurosci 2017;8:1438-47. https://doi.org/10.1021/acschemneuro.7b00176
  12. Liang S, Wang T, Hu X, Luo J, Li W, Wu X, Duan Y, Jin F. Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience 2015;310:561-77. https://doi.org/10.1016/j.neuroscience.2015.09.033
  13. Arseneault-Breard J, Rondeau I, Gilbert K, Girard SA, Tompkins TA, Godbout R, Rousseau G. Combination of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 reduces post-myocardial infarction depression symptoms and restores intestinal permeability in a rat model. Br J Nutr 2012;107:1793-9. https://doi.org/10.1017/S0007114511005137
  14. Davari S, Talaei SA, Alaei H, Salami M. Probiotics treatment improves diabetesinduced impairment of synaptic activity and cognitive function: behavioral and electrophysiological proofs for microbiome-gut-brain axis. Neuroscience 2013;240:287-96. https://doi.org/10.1016/j.neuroscience.2013.02.055
  15. Lee NK, Paik HD. Bioconversion using lactic acid bacteria: ginsenosides, GABA, and phenolic compounds. J Microbiol Biotechnol 2017;27:869-77. https://doi.org/10.4014/jmb.1612.12005
  16. Yunes RA, Poluektova EU, Dyachkova MS, Klimina KM, Kovtun AS, Averina OV, Orlova VS, Danilenko VN. GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota. Anaerobe 2016;42:197-204. https://doi.org/10.1016/j.anaerobe.2016.10.011
  17. Borrelli L, Aceto S, Agnisola C, Paolo SD, Dipineto L, Stilling RM, Dinan TG, Cryan JF, Menna LF, Fioretti A. Probiotic modulation of the microbiota-gutbrain axis and behaviour in zebrafish. Sci Rep 2016;6:30046. https://doi.org/10.1038/srep30046
  18. Wu C, Sun D. GABA receptors in brain development, function, and injury. Metabolic Brain Disease 2015;30:367-79. https://doi.org/10.1007/s11011-014-9560-1
  19. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 2011;108:16050-5. https://doi.org/10.1073/pnas.1102999108
  20. Cryan JF, Kelly PH, Chaperon F, Gentsch C, Mombereau C, Lingenhoehl K, Froestl W, Bettler B, Kaupmann K, Spooren WP. Behavioral characterization of the novel GABAB receptor-positive modulator GS39783 (N,N'-dicyclopentyl-2-methylsulfanyl- 5-nitro -pyrimidine -4,6-diamine): anxiolytic-like activity without side effects associated with baclofen or benzodiazepines. J Pharmacol Exp Ther 2004;310:952-63. https://doi.org/10.1124/jpet.104.066753
  21. Jacobson LH, Cryan JF. Evaluation of the anxiolytic-like profile of the GABAB receptor positive modulator CGP7930 in rodents. Neuropharmacology 2008;54:854-62. https://doi.org/10.1016/j.neuropharm.2008.01.004
  22. Auteri M, Zizzo MG, Serio R. GABA and GABA receptors in the gastrointestinal tract: from motility to inflammation. Pharmacol Res 2015;93:11-21. https://doi.org/10.1016/j.phrs.2014.12.001
  23. Lee MR, Yun BS, Sung CK. Comparative study of white and steamed Black-Panax ginseng, P. Quinquefolium, and P. Notoginsengon cholinesterase inhibitory and antioxidative activity. J Ginseng Res 2012;36:93-101. https://doi.org/10.5142/jgr.2012.36.1.93
  24. Zheng YK, Miao CP, Chen HH, Huang FF, Xia YM, Chen YW, Zhao LX. Endophytic fungi harbored in Panax notoginseng: diversity and potential as biological control agents against host plant pathogens of root-rot disease. J Ginseng Res 2016;41:353-60. https://doi.org/10.1016/j.jgr.2016.07.005
  25. Huang XP, Ding H, Lu JD, Tang YH, Deng BX, Deng CQ. Effects of the combination of the main active components of Astragalus and Panax notoginseng on inflammation and apoptosis of nerve cell after cerebral ischemia-reperfusion. Am J Chin Med 2015;43:1419-38. https://doi.org/10.1142/S0192415X15500809
  26. Li H, Xiao J, Li X, Chen H, Kang D, Shao Y, Shen B, Zhu Z, Yin X, Xie L. Low cerebral exposure cannot hinder the neuroprotective effects of panax notoginsenosides. Drug Metab Dispos 2017;117. 078436.
  27. Qi LW, Wang HY, Zhang H, Wang CZ, Li P, Yuan CS, Yuan. Diagnostic ion filtering to characterize ginseng saponins by rapid liquid chromatography with time-of-flight mass spectrometry. J Chromatogr A 2012;1230:93-9. https://doi.org/10.1016/j.chroma.2012.01.079
  28. Xing R, Zhou L, Xie L, Hao K, Rao T, Wang Q, Ye W, Fu H, Wang X, Wang G. Development of a systematic approach to rapid classification and identification of notoginsenosides and metabolites in rat feces based on liquid chromatography coupled triple time-of-flight mass spectrometry. Analytica Chimica Acta 2015;867:56-66. https://doi.org/10.1016/j.aca.2015.02.039
  29. Liu C, Hu M, Guo H, Zhang M, Zhang J, Li F, Zhong Z, Chen Y, Li Y, Xu P. Combined contribution of increased intestinal permeability and inhibited deglycosylation of ginsenoside Rb1 in the intestinal tract to the enhancement of ginsenoside Rb1 exposure in diabetic rats after oral administration. Drug Metab Dispos 2015;43:1702-10. https://doi.org/10.1124/dmd.115.064881
  30. Shen L, Xiong Y, Wang DQ, Howles P, Basford JE, Wang J, Xiong YQ, Hui DY, Woods SC, Liu M. Ginsenoside Rb1 reduces fatty liver by activating AMPactivated protein kinase in obese rats. J Lipid Res 2013;54:1430-8. https://doi.org/10.1194/jlr.M035907
  31. Wang J, Qiao L, Li S, YangG. Protective effect of ginsenosideRb1 against lung injury induced by intestinal ischemia-reperfusion in rats. Molecules 2013;18:1214-26. https://doi.org/10.3390/molecules18011214
  32. Sun Q, Meng Q, Jiang Y, Liu H, Lei S, Su W, Duan W, Wu Y, Xia Z. Protective effect of ginsenoside Rb1 against intestinal ischemia-reperfusion induced acute renal injury in mice. Plos One 2013;8, e80859. https://doi.org/10.1371/journal.pone.0080859
  33. Ahmed T, Raza SH, Maryam A, Setzer W, Braidy N, Nabavi SF, de Oliveira MR, Nabavi SM. Ginsenoside Rb1 as neuroprotective agent: a review. Brain Res Bull 2016;125:30-43. https://doi.org/10.1016/j.brainresbull.2016.04.002
  34. Swanson RA, Morton MT, Tsao-Wu G, Savalos RA, Davidson C, Sharp FR. A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab 1990;10:290-3. https://doi.org/10.1038/jcbfm.1990.47
  35. Zhou L, Xing R, Xie L, Rao T, Wang Q, Ye W, Fu H, Xiao J, Shao Y, Kang D, et al. Development and validation of an UFLC-MS/MS assay for the absolute quantitation of nine notoginsenosides in rat plasma: application to the pharmacokinetic study of Panax notoginseng extract. J Chromatogr B Analyt Technol Biomed Life Sci 2015;995-996:46-53. https://doi.org/10.1016/j.jchromb.2015.05.022
  36. Xiao J, Chen H, Kang D, Shao Y, Shen B, Li X, Yin X, Zhu Z, Li H, Rao T. Qualitatively and quantitatively investigating the regulation of intestinal microbiota on the metabolism of panax notoginseng saponins. J Ethnopharmacol 2016;194:324-6. https://doi.org/10.1016/j.jep.2016.09.027
  37. Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 2015;28:203-9.
  38. Bienenstock J, Kunze W. Microbiota and the gut-brain axis. Nutr Rev 2015;73(Suppl 1):28-31. https://doi.org/10.1093/nutrit/nuv019
  39. Barrett E, Ross RP, O'Toole PW, Fitzgerald GF, Stanton C. ${\gamma}$-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol 2014;113:411-7. https://doi.org/10.1111/j.1365-2672.2012.05344.x
  40. Bharwani A, Mian MF, Surette MG, Bienenstock J, Forsythe P. Oral treatment with Lactobacillus rhamnosus attenuates behavioural deficits and immune changes in chronic social stress. BMC Med 2017;15:7. https://doi.org/10.1186/s12916-016-0771-7
  41. Wang H, Lee IS, Braun C, Enck P. Effect of probiotics on central nervous system functions in animals and humans: a systematic review. J Neurogastroenterol Motil 2016;22:589-605. https://doi.org/10.5056/jnm16018

Cited by

  1. Multiomics Profiling Reveals Protective Function of Schisandra Lignans against Acetaminophen-Induced Hepatotoxicity vol.48, pp.10, 2020, https://doi.org/10.1124/dmd.120.000083
  2. The Role of Intestinal Bacteria and Gut-Brain Axis in Hepatic Encephalopathy vol.10, 2020, https://doi.org/10.3389/fcimb.2020.595759
  3. Traditional Herbal Medicine Discovery for the Treatment and Prevention of Pulmonary Arterial Hypertension vol.12, 2021, https://doi.org/10.3389/fphar.2021.720873
  4. Ginsenoside Rb1 Mitigates Escherichia coli Lipopolysaccharide-Induced Endometritis through TLR4-Mediated NF-κB Pathway vol.26, pp.23, 2020, https://doi.org/10.3390/molecules26237089