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I. INTRODUCTION

Achromatization is a necessary process to design a lens 

system which operates at various wavelengths or wavelength 

bands. Many achromatization methods based on the thin 

lens approximation and dispersion constants have been 

introduced in optical texts and monographs dealing with 

optical system design [1-3]. In addition to the chromatic 

variation, the change in ambient temperature affects the 

first order properties and aberrations of optical imaging 

system. Hence, various design methods which correct the 

chromatic variation and the thermal change at the same 

time have been presented [4-6]. In either case, the main 

purpose of the achromatization is to minimize image 

degradation due to chromatic variation within a specified 

wavelength range [7-9]. Since the refractive index of 

optical material varies rapidly in the blue region around 

400 nm, expensive abnormal glasses are used to correct 

the chromatic variations in the blue region. For some 

applications, one wants a lens system which has good 

imaging performance at the blue region but is not 

necessary for the entire range of visible light. In that case, 

a lens which is stable against chromatic variation at a 

specified wavelength may be very suitable for the purpose. 

In 2017, a collimator lens that was very stable against 

chromatic variation was presented [10]. To minimize 

chromatic variation of the effective focal length, the first- 

and second-order wavelength derivatives of the refractive 

power were corrected in the paper. However, the chromatic 

variation of image height was not considered.

This paper presents a new method to design a stable lens 

system at a specified wavelength based on paraxial ray 

tracing. In the conventional achromatization, the chromatic 

aberrations such as axial and lateral color are corrected. 

Unlike the conventional method, the new method suppresses 

chromatic changes of the marginal ray in the image-side. 

By doing so, chromatic shift of the paraxial focus and 

chromatic change of the image height are minimized at the 

same time. The conditions for stabilizing against chromatic 

variation are derived from the first order wavelength 

derivatives of incident heights and paraxial angles. Hence, 

they are given by recurrence formulas. However, there is 

an analytic solution for the case of a cemented doublet in 

the air. For a design example, a stable doublet at 405 nm 
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wavelength is designed. The paraxial properties and RMS 

wavefront errors of the lens are very stable against chromatic 

variations around 405 nm wavelength, as expected.

II. STABLIZATION OF LENS SYSTEM 

AGAINST CHROMATIC VARIATION

Figure 1 shows a lens system and its marginal ray. Let 

us begin with the first order properties of the lens system 

and use the following notations:

• , refractive index of the medium after refraction on the 

j-th surface

• , incident height of the marginal ray on the j-th surface

• , paraxial angle of the marginal ray after refraction on 

the j-th surface

• , image height formed by the j-th surface

• , curvature radius of the j-th surface

• , axial distance from the j-th surface to the next surface

• ≡



, refractive power of the j-th surface

• ≡



, converted thickness of  in the air

• ≡, numerical aperture of the marginal ray after 

refraction

• ≡



, relative height of the marginal ray

• ≡



, transverse magnification of the j-th surface

In Fig. 1, surface 0 is the object, and  is the object 

height. In the image-side, surface k means the last surface 

of the lens system. Hence,  is image height of lens 

system. In optical imaging, Lagrange’s invariant and its 

chromatic variation in the object-side are given as follows:

,

0 0 0

0 0 0 0 0 0
( ) ( ) ( )
dn du ddH

u n n u
d d d d


 

   
  

 (1)

0 0 0

0 0 0

1 1 1
( ) ( ) ( )
dn du d

H
n d u d d



   

 
   

 
.

By the same way, Lagrange’s invariant and its chromatic 

variation in the image-side are given as follows:

,

1 1 1
( ) ( ) ( )k k k

k k k

dn du ddH
H

d n d u d d



    

 
   

 
.

(2)

Even though the wavelength of imaging light varies, the 

object height  and the incident angle  are not changed:

0
0

du

d
 , 0

0
d

d




 . (3)

Since Lagrange’s invariant and its chromatic variation 

should be same on both sides, the chromatic variation of 

 always satisfies the following relation:

0

0

1 1 1 1 1
( ) ( ) ( ) ( ) ( )k k k

k k k

dn dn du ddH

H d n d n d u d d



     
    . (4)

Consider only the lens system whose object and image 

are in the same medium,

0

0

1 1
( ) ( )k

k

dn dn

n d n d 
 , (5)

then the chromatic variation of image height is given by 

Eq. (6):

( )k k k

k

d du

d u d

 

 
  . (6)

Eq. (6) means that if the chromatic variation of  is 

suppressed, then the chromatic variation of image height is 

suppressed also. This is the first condition to design a lens 

system stable against chromatic variation:

0
k

du

d
 , the condition for stabilizing image height. (7)

Let’s return to Fig. 1. The position of paraxial image 

and its wavelength derivative are given as follows:

FIG. 1. Layout of an optical imaging system.
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k

k

k

h
l

u
   , (8)

2

1
( ) ( )k k k k

k k

dl dh h du

d u d u d  


  

1 1
( ) ( )k k

k

k k

dh du
l

h d u d 

 
  
 

. (9)

Even though a lens system has been stabilized for the 

chromatic variation of image height, the chromatic variation 

of  affects image position. Therefore, the chromatic 

variation of  should be suppressed to fix image position.

0
k

dh

d
 , the additional condition for stabilizing image 

position. (10)

Eqs. (7) and (10) are the stabilizing conditions presented 

in this paper. In conventional design, chromatic aberrations 

are corrected to minimize chromatic variation, but we 

suppress the chromatic variations of the marginal ray in the 

image-side. By doing so, the image position and the image 

height are stabilized against chromatic variation at the same 

time.

Figure 2 shows a paraxial ray transferring from the 

(j-1)-th surface to the j-th surface and refracting on the j-th 

surface. Eq. (11) is the transfer equation of the ray, and 

Eq. (12) is the refraction equation:

1 1 1j j j j
h h d u

  

  , (11)

1 1j j j j j j
n u n u h

 

 . (12)

Let’s rewrite Eqs. (11) and (12) by using the converted 

thickness in the air j
t  and the paraxial numerical aperture 

j
  as follows:

1 1 1j j j j
h h t 

  

  , (13)

1j j j j
h  



  . (14)

From the definitions of j
t  and j

 , the chromatic 

variations of j
t  and j

  are given as follows:

2

1
( )

j j j j

j

j j

dt d dn dn
t

d n d n d  

 
     

 
, (15)

11j j j

j

d dn dn

d r d d



  



 
  

 

1

1

1

( )

j j

j

j j

dn dn

n n d d


 





 
  

  
. (16)

By using Eqs. (13) and (14), the above equations are 

rewritten as the functions of h and  :

1 1 1

1 1

1j j j j

j j

dt dn h h

d n d  

  

 

  
     

  
, (17)

1

1

1

1
( )

( )

j j j

j j

j j j

d dn dn

d n n h d d


 

  







 
    

  
. (18)

From Eqs. (13), (17), (14) and (18), the chromatic 

variation of ray height and numerical aperture are given as 

follows:

1 1 1 1 1

1 1

j j j j j j j

j j

dh dh d dn h h

d d d n d

 

    

    

 

    
            

, (19)

1 1

1

1 1j j j j j

j j j

d d dh dn dn

d d h d n n d d

 

    

 



     
       

      (20)

      ∙ 1
( )

j j
 



 .

For convenience, let’s rewrite Eqs. (19) and (20) by using 

the dimensionless design parameter j
a  and j

m  [11, 12]:

1 1 1

1 1

1 1
( ) ( )

j j j j

j j

dh dh d dn

d d d n d



    

  

 

  
   

   (21)

     ∙ 1 1
( 1)

j j
a h

 

 ,

1 1

1

1 1
( )

j j j j j

j j j

d d dh dn dn

d d h d n n d d

 

    

 



   
     

    (22)

      ∙(1 )
j j

m  .

Let’s consider Eqs. (7) and (10), the conditions for 

stabilizing against chromatic variation. Since the image is 

in the air and the k-th surface is the last surface of the lens 

system, the conditions can be expressed by the following 

recurrence formulas:

1 1 1

1 1

1 1
( ) ( )k k k k

k k

dh dh d dn

d d d n d



    

  

 

 
   

  (23)

      ∙ 1 1
( 1) 0

k k
a h

 

  ,

FIG. 2. Ray transfer between surfaces.
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k k
du d

d d



 


1k
d

d







     
1

1

1 1
( )k k k

k k k

dh dn dn

h d n n d d  





  
      

 (24)

     ∙ ( ) 01
k k

m   .

III. STABLIZATION OF CEMENTED DOUBLET 

IN THE AIR

The stabilizing conditions could be applied all of lens 

system which use two or more kinds of optical materials. 

But it may not be easy to find the solution of Eqs. (23) 

and (24) if the lens system is consisted of many elements. 

However, there is an analytic solution for the case of 

cemented doublet in the air.

For the case of cemented doublet in the air, the following 

conditions are always satisfied.

0
1n  , 0

0
dn

d
 ,

3
1n  , 3

0
dn

d
 ,

1
0

dh

d
 , 0

0
d

d




 .

Since the 3rd surface is the last surface of the lens, the 

stabilizing conditions are given by

3 2 2 2

2 2

2 2

1 1
( ) ( 1) 0

dh dh d dn
a h

d d d n d



    

  
      

  
, (25)

3 32 2

3 3

3 2

1 1
( ) ( ) (1 ) 0

1

d dhd dn
m

d d h d n d

 


   

 
     

 
. (26)

From the recurrence relations of Eqs. (21) and (22), we 

can get chromatic variations of the marginal ray at the 

first and the second surfaces:

1 1 1

1

1

1

1

d m dn

d n d




 

  
  

  
, (27)

2 1 1 1

1 1

1 1

1
( 1)

( 1)

dh n m dn
a h

d n n d 

  
  

  
, (28)

2 1 2 2 1

2 2 1

1 1
( )

d d dh dn dn

d d h d n n d d

 

    

  
     

    (29)

      ∙
2 2

(1 )m  .

A cemented doublet has five structural parameters ( 1
a , 

2
a , 1

m , 
2

m  and 3
m ), and two scaling parameters ( 1

h , 3
u ). 

The structural parameters determine the shape of the lens 

system, and scale parameters are given by specifications, 

EFL and f-number of the system. Since there are two 

conditions for stabilizing a lens system, three structural 

parameters should be assigned to determine the shape after 

selecting two glasses. For convenience, let’s take 1
a , 2

a  

and 1
m  as the known parameters. By doing so, Eqs. (25) 

and (26) can be expressed as linear functions of ( 2
m , 3

m ). 

Let’s define 0
A , 1

A  and 2
A  as follows:

2 1 1 1 1

0

2 1 1 1

(1 )( 1)1

( 1)

dh n m a dn
A

h d n n a d 

    
    

   
, (30)

1 1

1

1

(1 )

1

m dn
A

n d

  
  

  
, (31)

2 1

2 0

2 1

1 dn dn
A A

n n d d 

 
   

  
. (32)

Then, Eq. (29) becomes

2

1 2 2 2

2

1
( )

d
A A m A

d



 

 
   

 
. (33)

By using Eqs. (33) and (30), we obtain a linear equation 

of 2
m  from Eq. (25):

2

0 1 2 2 2 2

2

1
( ) ( 1) 0

dn
A A A m A a

n d

  
       

  
. (34)

Eq. (34) is the solution of Eq. (25), one of the stabilizing 

conditions. Let’s consider another condition. Eq. (26) can 

be rewritten as follows:

3 2

3

3 2

1 1d d
m

d d

 

   

   
   

  

          
3 2

3

3 2

1 1
( ) ( ) (1 ) 0

1

dh dn
m

h d n d 

 
    

 
.

Now, Eq. (25) is already satisfied by Eq. (34). By using 

Eq. (33), the above equation becomes

 3 3 2

1 2 2 2 3

3 2

11
( ) 0

1

d m dn
A A m A m

d n d



  

   
          

. (35)

Since 2
m  is given by Eq. (34), Eq. (35) is a linear 

function of 3
m . Eq. (35) is the solution of Eq. (26).

When all of the structural and scaling parameters are 

determined, design data of the doublet is given as follows:
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1

3

3

h
q

u
  , (36)

1 1

1 3

2 3

(1 )n a
d q

m m



 , (37)

2 2 1

2 3

3

(1 )n a a
d q

m


 , (38)

1 0

1 3

1 2 3
(1 )

n n
r q

m m m







, (39)

2 1 1

2 3

2 3

( )

(1 )

n n a
r q

m m







, (40)

3 2 1 2

3 3

3

( )

1

n n a a
r q

m







. (41)

IV. DESIGN OF A STABLE CEMENTED 

DOUBLET

Conventional doublets are designed for the entire visible 

range. But they have relatively poor imaging performance 

in the blue region around 405 nm wavelength because of 

rapid change of refractive index. In order to reduce the 

performance degradation in the blue region, expensive 

abnormal glasses are used for designing super-achromats 

[13, 14].

In this study, a stable doublet at 405 nm wavelength is 

designed by using popular glasses only, not the expensive 

glasses. Table 1 shows basic specifications of the stable 

doublet. The glasses and their refractive indices are listed 

in Table 2. A cemented doublet has five structural 

parameters and two scaling parameters as mentioned in the 

previous section. From Tables 1 and 2, some of the design 

parameters are given as follows:

1
h  12.5 mm ,

3 3
0.01u    ,

1

3

3

h
q f

u
    = 125 mm ,

0
1n  , 0

0
dn

d
 ,

1
1.530196n  , 

41
1.279284 10

dn

d



   ,

2
1.650759n  , 

42
3.251850 10

dn

d



   ,

3
1n  , 3

0
dn

d
 ,

1
0m  .

There are four undetermined structural parameters ( 1
a , 

2
a , 

2
m  and 

3
m ). When (

1
a , 

2
a ) are chosen, then (

2
m , 

3
m ) 

can be obtained by Eqs. (34) and (35). Since the stabilizing 

conditions correct the chromatic variations only, (
1
a , 

2
a ) 

should be taken to minimize spherical aberration and coma. 

To get the best solution, we search the best combination 

of (
1
a , 

2
a ) in the range of 0.899 to 0.999. Outside of the 

search range, axial thickness of the lens becomes too thick 

or thin so that the lens cannot be used for practical purpose. 

Figure 3 shows the third order spherical aberration (SA) 

of the stable doublet as a function of (
1
a , 

2
a ). SA has 

negative value only and makes a narrow valley along the 

dotted line in Fig. 3. Around A (
1
a = 0.899, 

2
a = 0.969) in 

Fig. 3 might be the best combination if we consider SA 

only. But axial thicknesses of the lenses are too thick as 

shown in Figs. 5 and 6. The third order tangential coma 

(TCO) is shown in Fig. 4. There are zero coma solutions 

along the dotted line in Fig. 4. Axial thickness 1
d  and 2

d  

are shown in Figs. 5 and 6 respectively.

Considering SA, TCO and axial thicknesses, the stable 

TABLE 1. Design specification of the stabilized doublet at 

wavelength of 405 nm

Effective focal length 125 mm

Entrance pupil diameter (f-number) 25 mm (F/5.0)

Half field angle 1°

Paraxial numerical aperture 0.1

Paraxial image height 2.1819 mm

Optical glasses NBK7, NF2

TABLE 2. Refractive indices and the first order derivatives

Glass

(Schott)

Wavelength (nm) 

@ 405 nm385 395 405 415 425 

NBK7 1.532974 1.531528 1.530196 1.528966 1.527827 -1.279284E-04

NF2 1.657996 1.654185 1.650759 1.647664 1.644854 -3.251850E-04
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doublet was taken at 1
a = 0.961 and 2

a = 0.988. The design 

data are listed in Table 3. Optical layout of the system is 

shown in Fig. 7. Marginal ray data and their chromatic 

variations are listed in Table 4. Table 4 shows that the 

marginal ray meets the stabilizing conditions of Eqs. (25) 

and (26). Table 5 shows the marginal ray data and paraxial 

properties of the stable doublet. Within wavelength 385 nm 

to 425 nm, chromatic variations of paraxial properties are 

very small as expected. Figure 8 shows chromatic variations 

of EFL. The third order aberrations of the stable doublet 

are listed in Table 6. EFL has the minimum value at 405 

nm wavelength in Fig. 8 and the doublet has zero LAT 

(lateral color). They are results of the stabilizing conditions 

of Eqs. (25) and (26). Figure 9 shows chromatic variations 

of rms wavefront errors. Since the doublet is stabilized 

against chromatic variations, rms wavefront errors are quite 

small within wavelength 390 nm to 440 nm. It may be a 

good characteristic of the doublet for applications in the 

blue region.

FIG. 3. Distribution of spherical aberration as a function of 1
a  

& 2
a .

FIG. 4. Distribution of tangential coma as a function of 1
a  & 2

a .

FIG. 5. Distribution of the thickness 1
d  as a function of 1

a  & 2
a .

FIG. 6. Distribution of the thickness 2
d  as a function of 1

a  & 2
a .

TABLE 3. Design data of the stabilized doublet

# r (mm) d (mm) Glass Remark

0 Infinity Object

1 78.30217 8.813513 NBK7 Stop

2 -58.24740 3.980852 NF2

3 -192.00774 118.68350

4 -0.19574 Image

FIG. 7. Optical layout of the stabilized doublet ( 1
a  = 0.961, 

2
a  = 0.988).
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TABLE 4. Marginal ray data and its chromatic variations

#
Ray data Design parameters Chromatic variations

h (mm) u a m  

0 0.000000 0.00000E+00 0.00000E+00

1 12.500000 -0.055313 0.961000 0.000000 0.00000E+00 8.72186E-06

2 12.012500 -0.036211 0.988000 1.415960 7.68702E-05 -1.93090E-05

3 11.868400 -0.100000 0.597754 3.82220E-09 9.31194E-10

4 0.000000

TABLE 5. Chromatic variations of the first order parameters

Wave length

(nm)


 (mm) 

 EFL (mm) BFL (mm) BFL-EFL
Image height 

(mm)

385 11.86845 -0.099975 125.03090 118.713800 -6.317100 2.181902 

390 11.86840 -0.099987 125.01640 118.699600 -6.316800 2.181893 

395 11.86837 -0.099994 125.00690 118.690300 -6.316600 2.181887 

400 11.86836 -0.099999 125.00160 118.685100 -6.316500 2.181884 

405 11.86835 -0.100000 125.00000 118.683500 -6.316500 2.181883 

410 11.86835 -0.099999 125.00150 118.685000 -6.316500 2.181884 

415 11.86837 -0.099995 125.00570 118.689100 -6.316600 2.181887 

420 11.86839 -0.099990 125.01220 118.695500 -6.316700 2.181891 

425 11.86842 -0.099983 125.02080 118.703900 -6.316900 2.181896 

Max. 11.86845 -0.099975 125.03090 118.713800 -6.316500 2.181902 

Min. 11.86835 -0.100000 125.00000 118.683500 -6.317100 2.181883 

Max-Min 0.00010 0.000025 0.03090 0.030300 0.000600 0.000019 

TABLE 6. The third order aberrations of the stabilized doublet (units in mm, calculated by Code V)

# SA TCO TAS SAS PTB DST AX LAT PTZ

1 -0.0576 -0.0189 -0.0031 -0.0017 -0.0011 -0.0002 -0.0671 -0.0073 -0.0044

2 0.1367 -0.0152 0.0008 0.0004 0.0002 0.0000 0.2210 -0.0082 0.0008

3 -0.1213 0.0370 -0.0042 -0.0017 -0.0005 0.0002 -0.1529 0.0155 -0.0021

SUM -0.0421 0.0029 -0.0066 -0.0031 -0.0013 0.0000 0.0010 0.0000 -0.0057

FIG. 8. Chromatic variation of effective focal length. FIG. 9. Chromatic variation of rms wavefront errors.
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V. CONCLUSION

A new design method to obtain a stable lens system 

against chromatic variation is presented. In the conventional 

design of a lens system, chromatic aberrations such as axial 

and lateral color are corrected. In contrast, the new method 

suppresses chromatic variations of the marginal ray in the 

image-side. By doing so, the position and the height of 

image are stabilized against chromatic variation at the 

same time.

Since the new method is based on paraxial ray tracing, 

the stabilizing conditions are given by recurrence formulas. 

However, there is an analytic solution for the case of 

cemented doublet in the air. By using the analytic solution, 

a stable cemented doublet at 405 nm wavelength is designed 

and analyzed. Paraxial properties such as EFL, BFL and 

image height are very stable as expected. Even though the 

stable doublet is designed by using popular glasses, the 

doublet has quite good imaging performance in the blue 

region. In conclusion, the new design method presented in 

this paper is expected to be a very useful way to design a 

stable lens system against chromatic variation at a desired 

wavelength.
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