DOI QR코드

DOI QR Code

Design of Concentrating System for Solar Side-pumped Slab Laser

  • Fan, Wentong (College of Science, China Three Gorges University) ;
  • Liu, Yan (College of Science, China Three Gorges University) ;
  • Guo, Pan (College of Science, China Three Gorges University) ;
  • Deng, Rui (College of Science, China Three Gorges University) ;
  • Li, Nan (School of Physics, Northeast Normal University) ;
  • Ding, Fukang (College of Science, China Three Gorges University) ;
  • Li, Yasha (College of Electrical Engineering & New Energy, China Three Gorges University) ;
  • Zhou, Jun (Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) ;
  • Xie, Shiwei (College of Science, China Three Gorges University)
  • Received : 2019.10.30
  • Accepted : 2019.12.11
  • Published : 2020.02.25

Abstract

The design of a concentration system for a solar side-pumped slab laser was investigated. The side size of the slab laser medium is 2 mm × 20 mm. Based on the principle of the edge ray, a secondary concentrating system consisting of a rectangular parabolic mirror (RPM) and a rectangular dielectric-filled compound parabolic concentrator (RDCPC) was demonstrated. The focal length of RPM is 1200 mm and the size is 734 mm × 2000 mm. The outlet size of the RDCPC is 2 mm × 20 mm. The concentration effect was analyzed by using Tracepro optical software. The results showed that the concentration efficiency reached 81.3% and the uniformity of the spot was 91.4% after optimization. This design of concentration system is of great reference value for a solar side-pumped slab laser.

Keywords

References

  1. J. Almeida, D. Liang, and E. Guillot, "Improvement in solar-pumped Nd:YAG laser beam brightness," Opt. Laser Technol. 44, 2115-2119 (2012). https://doi.org/10.1016/j.optlastec.2012.03.017
  2. Y. Suzuki, H. Ito, T. Kato, L. T. A. Phuc, K. Watanabe, H. Terazawa, K. Hasegawa, T. Ichikawa, S. Mizuno, A. Ichiki, S. Takimoto, A. Ikesue, Y. Takeda, and T. Motohiro, "Continuous oscillation of a compact solar-pumped Cr, Nd-doped YAG ceramic rod laser for more than 6.5 h tracking the sun," Sol. Energy 177, 440-447 (2019). https://doi.org/10.1016/j.solener.2018.10.071
  3. H. Arashi and Y. Kaneda, "Solar-pumped laser and its second harmonic generation," Sol. Energy 50, 447-451 (1993). https://doi.org/10.1016/0038-092X(93)90067-X
  4. M. Weksler and J. Shwartz, "Solar-pumped solid-state lasers," IEEE J. Quantum Electron. 24, 1222-1228 (1988). https://doi.org/10.1109/3.247
  5. D. Cooke, "Sun-pumped lasers:revisiting and old problem with nonimaging optics," Appl. Opt. 31, 7541-7546 (1992). https://doi.org/10.1364/AO.31.007541
  6. T. Yabe, T. Ohkubo, S. Uchida, K. Yoshida, M. Nakatsuka, T. Funatsu, A. Mabuti, A. Oyama, K. Nakagawa, T. Oishi, K. Daito, B. Behgol, Y. Nakayama, M. Yoshida, S. Motokoshi, Y. Sato, and C. Baasandash, "High-efficiency and economical solar-energy-pumped laser with Fresnel lens and chromium codoped laser medium," Appl. Phys. Lett. 90, 261120 (2007). https://doi.org/10.1063/1.2753119
  7. J. W. He, C. M. Chang, S. H. Yang, A. Ding, and L. W. Zhang, "Solar pumped Nd:YAG laser," Chin. J. Laser 36, 255-256 (2009). https://doi.org/10.3788/CJL20093601.0255
  8. M. Lando, J. Kagan, B. Linyekin, and V. Dobrusin, "A solar-pumped Nd:YAG laser in the high collection efficiency regime," Opt. Commun. 222, 371-381 (2003). https://doi.org/10.1016/S0030-4018(03)01601-8
  9. D. Liang, J. Almeida, and C. R. Vistas, "Scalable pumping approach for extracting the maximum $TEM_{00}$ solar laser power," Appl. Opt. 53, 7129-7137 (2014). https://doi.org/10.1364/AO.53.007129
  10. D. Liang, J. Almeida, C. R. Vistas, M. Oliveira, F. Goncalves, and E. Guillot, "High-efficiency solar-pumped $TEM_{00}$-mode Nd:YAG laser," Sol. Energy Mater. Sol. Cells 145, 397-402 (2016). https://doi.org/10.1016/j.solmat.2015.11.001
  11. S. Mehellou, D. Liang, J. Almeida, R. Bouadjemine, C. R. Vistas, E. Guillot, and F. Rehouma, "Stable solar-pumped $TEM_{00}$-mode 1064 nm laser emission by a monolithic fused silica twisted light guide," Sol. Energy 155, 1059-1071 (2017). https://doi.org/10.1016/j.solener.2017.07.048
  12. D. Liang, C. R. Vistas, J. Almeida, B. D. Tiburcio, and D. Garcia, "Side-pumped continuous-wave Nd:YAG solar laser with 5.4% slope efficiency," Sol. Energy Mater. Sol. Cells 192, 147-153 (2019). https://doi.org/10.1016/j.solmat.2018.12.029
  13. J. Almeida, D. Liang, E. Guillot, and Y. Abdel-Hadi, "A 40 W cw Nd:YAG solar laser pumped through a heliostat: a parabolic mirror system," Laser Phys. 23, 065801 (2013). https://doi.org/10.1088/1054-660X/23/6/065801
  14. J. Almeida, D. Liang, C. R. Vistas, and E. Guillot, "Highly efficient end-side-pumped Nd:YAG solar laser by a heliostatparabolic mirror system," Appl. Opt. 54, 1970-1977 (2015). https://doi.org/10.1364/AO.54.001970
  15. D. Liang, J. Almeida, and C. R. Vistas, "25 $W/m^2$ collection efficiency solar-pumped Nd:YAG laser by a heliostat-parabolic mirror system," Appl. Opt. 55, 7712-7717 (2016). https://doi.org/10.1364/AO.55.007712
  16. D. Liang, J. Almeida, C. R. Vistas, and E. Guillot, "Solarpumped Nd:YAG laser with 31.5 $W/m^2$ multimode and 7.9 $W/m^2$ $TEM_{00}$-mode collection efficiencies," Sol. Energy Mater. Sol. Cells 159, 435-439 (2017). https://doi.org/10.1016/j.solmat.2016.09.048
  17. D. Fang, X. H. Wang, F. Wang, and S. N. Liu, "Solar pumped Nd:YAG laser," Optik 124, 3367-3370 (2013). https://doi.org/10.1016/j.ijleo.2012.10.041
  18. Z. Guan, C. Zhao, J. Li, D. He, and H. Zhang, "32.1 $W/m^2$ continuous wave solar-pumped laser with a bonding Na:YAG/YAG rod and a Fresnel lens," Opt. Laser Technol. 107, 158-161 (2018). https://doi.org/10.1016/j.optlastec.2018.05.039
  19. C. R. Vistas, D. Liang, J. Almeida, B. D. Tiburcio, and D. Garcia, "A doughnut-shaped Nd:YAG solar laser beam with 4.5 $W/m^2$ collection efficiency," Sol. Energy 182, 42-47 (2019). https://doi.org/10.1016/j.solener.2019.02.030
  20. R. Bouadjemine, D. Liang, J. Almeida, S. Mehellou, C. R. Vistas, A. Kellou, and E. Guillot, "Stable $TEM_{00}$-mode Nd:YAG solar laser operation by a twisted fused silica light-guide," Opt. Laser Technol. 97, 1-11 (2017). https://doi.org/10.1016/j.optlastec.2017.06.003
  21. Z. Huang. "Theoretical optimization of output power in side pumped $Nd^{3+}$:YAG solar laser," Opt. Laser Technol. 111, 592-596 (2019). https://doi.org/10.1016/j.optlastec.2018.10.042
  22. W. A. Clarkson, "Thermal effects and their mitigation in end-pumped solid-state lasers," J. Phys. D: Appl. Phys. 34, 2381-2395 (2001). https://doi.org/10.1088/0022-3727/34/16/302
  23. T. Kane, R. Eckardt, and R. Byer. "Reduced thermal focusing and birefringence in Zig-zag slab geometry crystalline lasers," IEEE J. Quantum Electron. 19, 1351-1354 (1983). https://doi.org/10.1109/JQE.1983.1072061
  24. H. Pian, L. Yan, Z. Shuguang, C. Xuerong, Z. Jun, F. Shengqin, and S. Xiaotao,, "The influence of compound parabolic concentrator parameters on the solar laser condensation efficiency," Laser J. 38, 8-11 (2017).