DOI QR코드

DOI QR Code

Aberration Correction of an Off-axial-field Two-mirror System Using a Decentered Aperture

비축시야 2반사광학계에서 조리개의 편심을 이용한 수차보정

  • Lee, Jong-Ung (Department of Laser and Optical Information Engineering, Cheongju University)
  • 이종웅 (청주대학교 레이저광정보공학과)
  • Received : 2019.12.23
  • Accepted : 2020.01.14
  • Published : 2020.02.25

Abstract

To design a wide-field two-mirror system, the system must feature an off-axial field, to avoid ray obstruction and field screening by the secondary mirror. The off-axial aberrations of the system cannot be corrected sufficiently, though, because there are only a few design parameters. The present study designs an improved off-axial-field two-mirror system using a decentered aperture stop.

넓은 시야를 가지는 2반사광학계를 설계하기 위하여서는 제2거울에 의한 광선의 차폐와 시야 가림이 없도록 비축시야를 사용하여야 한다. 그러나 이러한 2반사경계에서는 설계변수가 적어 비축수차를 충분하게 보정할 수 없었다. 이 연구에서는 조리개를 편심시켜 보다 성능이 개선된 비축시야 2반사광학계를 설계하였다.

Keywords

References

  1. S. H. Kim, H. J. Kong, J. U. Lee, J. H. Lee, and J. H. Lee, "Design and construction of an Offner spectrometer based on geometrical analysis of ring fields," Rev. Sci. Instrum. 85, 083108-7 (2014). https://doi.org/10.1063/1.4892479
  2. J. U. Lee and S. M. Yu, "Analytic design procedure of three-mirror telescope corrected for spherical aberration, coma, astigmatism, and Petzval field curvature," J. Opt. Soc. Korea 13, 184-192 (2009). https://doi.org/10.3807/JOSK.2009.13.2.184
  3. I. Moon, S. Lee, J. Lim, H. S. Yang, H.-G. Rhee, J. B. Song, Y. W. Lee, J. U. Lee, and H. Jin, "Design and development of a wide field telescope," Proc. SPIE 8444, 844448 (2012).
  4. J. U. Lee, Y. Kim, S. H. Seo, Y. Kim, and H. Kim, "Optical design of an image-space telecentric two-mirror system for wide-field line imaging," Curr. Opt. Photon. 1, 344-350 (2017). https://doi.org/10.3807/COPP.2017.1.4.344
  5. G. I. Lebedeva and A. A. Garbul, "Prospective aerospace reflective objectives," J. Opt. Technol. 61, 610-614 (1994).
  6. H.-J. Oh and J.-U. Lee, "Optical design of a wide-field off-axis two-mirror system without ray obstruction," Korean J. Opt. Photon. 28, 263-272 (2017). https://doi.org/10.3807/KJOP.2017.28.6.263
  7. S. Rosin, "Inverse Cassegrainian systems," Appl. Opt. 7, 1483-1497 (1968). https://doi.org/10.1364/AO.7.001483
  8. W. B. Wetherell and M. P. Rimmer, "General analysis of aplanatic Cassegrain, Gregorian, and Schwarzschild telescopes," Appl. Opt. 11, 2817-2832 (1972). https://doi.org/10.1364/AO.11.002817
  9. C. L. Wyman and D. Korsch, "Aplanatic two-mirror telescopes; a systematic study. 3: Schwarzschild-Couder configuration," Appl. Opt. 14, 992-995 (1975). https://doi.org/10.1364/AO.14.000992
  10. H. Gross, F. Blechinger, and B. Achtner, "Telescopes," in Handbook of Optical Systems: Survey of Optical Instruments, (Wiley-VCH, Weinheim, 2008), Vol. 4, Chapter 43, pp. 723-864.
  11. J. M. Sasian, Introduction to aberrations in optical imaging systems (Cambridge Univ. Press, Cambridge, UK, 2013), Chapter 10.
  12. W. T. Welford, Aberrations of optical systems (Taylor & Francis Group, NewYork, 1986), Chapter 7.
  13. G. Kim, H.-G. Rhee, and H.-S. Yang, "Testing of a convex aspheric secondary mirror for the Cassegrain telescope," Korean J. Opt. Photon. 28, 290-294 (2017). https://doi.org/10.3807/KJOP.2017.28.6.290
  14. H.-E. Kang, J.-B. Song, H.-S. Yang, and H. Kihm, "Measurement of primary-mirror vertex coordinates for a space camera by using a computer-generated hologram and a theodolite," Korean J. Opt. Photon. 28, 146-152 (2017). https://doi.org/10.3807/KJOP.2017.28.4.146
  15. Y.-S. Kim, K.-B. Ahn, K.-J. Park, I. K. Moon, and H.-S. Yang, "Accuracy assessment for measuring surface figures of large aspheric mirrors," J. Opt. Soc. Korea 13, 178-183 (2009). https://doi.org/10.3807/JOSK.2009.13.2.178