DOI QR코드

DOI QR Code

Seismic Resistance of Masonry Walls Strengthened with Unbonded Prestressed Steel Bars and Glass Fiber Grids

강봉 및 유리섬유로 비부착 보강된 조적벽체의 내진 저항성 평가

  • 백지성 (경기대학교 일반대학원 건축공학과) ;
  • 양근혁 (경기대학교 건충공학과) ;
  • 황승현 (경기대학교 일반대학원 건축공학과) ;
  • 최용수 (포엠 주식회사 연구소)
  • Received : 2020.07.03
  • Accepted : 2020.09.25
  • Published : 2020.10.30

Abstract

This study examined the structural effectiveness of the unbonded technique originally developed for seismic strengthening of unreinforced masonry walls on the basis of the prestressed steel bars and glass fiber (GF) grids. The masonry walls were strengthened by using individual steel bars or GF grids and their combination. Test results showed that the proposed technique was favorable in enhancing the strength, stiffness, and ductility of the masonry walls. When compared with the lateral load capacity, stiffness at the ascending branch of the lateral load-displacement curve, and energy dissipation capacity of the unstrengthened control wall, the increasing ratios were 110%, 120%, and 360%, respectively, for the walls strengthened with the individual GF grids, 140%, 130%, and 510%, respectively, for the walls strengthened with the individual steel bars, and 160%, 130%, and 840%, respectively, for the walls strengthened with the combination of steel bars and GF grids. The measured lateral load capacities of masonry walls strengthened with the developed technique were in relatively good agreement with the predictions by the equations proposed by Yang et al. Overall, the developed technique is quite promising in enhancing the seismic performance of unreinforced masonry walls.

이 연구에서는 조적벽체의 내진보강을 위하여 프리스트레스트 강봉 및 유리섬유 망을 이용하여 개발된 비부착 공법의 구조적 효율성을 평가하였다. 주요 실험변수는 강봉 및 유리섬유 망의 개별 보강과 강봉과 유리섬유 망의 복합 보강이다. 실험결과 제안된 보강공법은 조적벽의 내력, 강성 및 연성향상에 효율적이었다. 보강되지 않은 조적벽의 횡하중 내력, 최대내력 이전의 강성 및 에너지소산 능력과 비교할 때, 유리섬유 망으로 보강된 벽체에서의 그 증가비는 각각 110%, 120% 및 360%이며, 프리스트레스트 강봉으로 보강된 벽체에서의 그 증가비는 각각 140%, 130% 및 510%이며, 유리섬유 망과 강봉으로 보강된 벽체에서의 그 증가비는 각각 160%, 130% 및 840%이었다. 제시된 기술로 보강된 조적벽의 횡하중 내력은 Yang et al.의 제안식을 이용한 예측값과 비교적 잘 일치하였다. 즉, 제안된 기술은 조적벽체의 내진보강을 위한 적용성으로서 구조적 잠재력이 높았다.

Keywords

References

  1. Park, B. C. (2009), Study on Seismic Retrofitting Techniques for Unreinforced Masonry Buildings, National Fire Agency, Korea.
  2. Churilov, S., and Dumova, E. J. (2013), In-plane Shear Behaviour of Unreinforced and Jacketed Brick Masonry Walls, Soil Dynamics and Earthquake Engineering, 50, 85-105 https://doi.org/10.1016/j.soildyn.2013.03.006
  3. Yang, K. H., Joo, D. B., Sim, J. I., and Kang, J. H. (2012), In-plane Seismic Performance of Unreinforced Masonry Walls Strengthened with Unbonded Prestressed Wire Rope Units, Engineering Structures, 45, 449-459. https://doi.org/10.1016/j.engstruct.2012.06.017
  4. Hernan, S. M., and Pablo, A. (2011), Repair of In-plane Shear Damaged Masonry Walls with External FRP, Construction and Building Materials, 25(3), 1172-1180. https://doi.org/10.1016/j.conbuildmat.2010.09.030
  5. Taghdi, M., Bruneau, M., and Satcioglu, M. (2000), Seismic Retrofitting of Low-rise Masonry and Concrete Walls Using Steel Strips, Journal of Structural Engineering ASCE, 126(9), 1017-1025. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:9(1017)
  6. Lee, J. H., Kim, K. M., Kim, H. W., Kim, J. S., Oh, S. H., and Lee, S. H. (2014), Seismic Retrofitting Effects of Retrofitted Unreinforced Masonry Walls Using Metal Laths and Steel Plates, Korean Society of Hazard Mitigation, 14(3), 63-70 https://doi.org/10.9798/KOSHAM.2014.14.3.63
  7. Lee, J. H. (2004), Seismic Capacity and Seismic Retrofitting of Low Rise Buildings, Ph.D. dissertation, Kwangwoon University, Department of Architecture Engineering.
  8. Architectural Institute of Korea (2016), Korean Building Code, (KBC 2016), Architectural Institute of Korea (AIK), Korea, Seoul.
  9. Federal Emergency Management Agency (1999), Evaluation of Earthquake Damaged Concrete and Masonry Wall Buildings, (FEMA 306), Applied Technology Council (ATC), USA, Washington, D.C.
  10. Korean Agency for Technology and Standard(KATS) (2013), Concrete Bricks, (KS F 4004), Korean Standard Association(KSA), Korea, Seoul.
  11. Korean Agency for Technology and Standard(KATS) (2017), Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio in Compression of Cylindrical Concrete Specimens, (KS F 2438), Korean Standard Association(KSA), Korea, Seoul.
  12. American Society for Testing and Materials (2007), Standard Test Method for Compressive Strength of Masonry Prisms, (ASTM C 1314), ASTM International, USA, Philadelphia.
  13. American Society for Testing and Materials (2003), Standard Test Method for Diagonal Tension(Shear) in Masonry Assemblages, (ASTM E 519), ASTM International, USA, Philadelphia.