DOI QR코드

DOI QR Code

A Structural Relationship of Topography, Developed Areas, and Riparian Vegetation on the Concentration of Total Nitrogen in Streams

지형, 개발지역, 수변림과 하천 내 총질소 농도와의 구조적 관계 분석

  • Lee, Sang-Woo (Dept. of Forestry and Landscape Architecture, Konkuk University) ;
  • Lee, Jong-Won (Dept. of Forestry and Landscape Architecture, Graduate School, Konkuk University) ;
  • Park, Se-Rin (Dept. of Forestry and Landscape Architecture, Graduate School, Konkuk University)
  • 이상우 (건국대학교 산림조경학과) ;
  • 이종원 (건국대학교 대학원 산림조경학과) ;
  • 박세린 (건국대학교 대학원 산림조경학과)
  • Received : 2020.01.28
  • Accepted : 2020.02.26
  • Published : 2020.02.28

Abstract

Land use in watersheds has been shown to be a major driving factor in determining the status of the water quality of streams. In this light, scientists have been investigating the roles of riparian vegetation on the relationships between land use in watersheds and the associated stream water quality. Numerous studies reported that riparian vegetation could alleviate the adverse effects caused by land use in watersheds and on stream water quality through various hydrological, biochemical and ecological mechanisms. However, this concept has been criticized as the true effects of riparian vegetation must be assessed by comprehensive models that mimic real environmental settings. This study aimed to estimate a comprehensive structural equation model integrating topography, land use, and characteristics of riparian vegetation. We used water quality data from the Nakdong River system monitored under the National Aquatic Ecosystem Monitoring Program (NAEMP) of the Korean Ministry of Environment (MOE). Also, riparian vegetation data and land use data were extracted from the Land Use/Land Cover map (LULC) produced by the MOE. The number of structural equation models (SEMs) were estimated in Amos of IBM SPSS. Study results revealed that land use was determined by elevation, and developed areas within a watershed significantly increased the concentration of Total Nitrogen (TN) in streams and LDI in riparian vegetation. On the contrary, developed areas significantly reduced LPI and PLAND. At the same time, PLAND and LDI significantly reduced the concentration of TN in streams. Thus, it was clear that developed areas in watersheds had both a direct and an indirect impact on the concentration of TN in streams, and spatial pattern and the amount of vegetation of riparian vegetation could significantly alleviate the negative impacts of developed areas on TN concentration in streams. To enhance stream water quality, reducing developed areas in a watershed is critical for long-term watershed management plans, restoration patterns for riparian vegetation could be immediately implemented since riparian areas were less developed than most other watersheds.

유역의 토지이용과 하천에 인접한 수변림은 하천의 수질을 결정하는 중요한 요인이다. 특히 유역의 개발지역은 불투수면을 증가시키고, 강우유출 특성과 비점오염물질 거동을 변화시켜 하천의 수질을 악화시킨다. 한편, 수변림은 다양한 수문학적, 생화학적 및 생태학적 작용을 통해 유역의 토지이용이 수질에 미치는 영향을 완화시키는 것으로 보고되어 왔다. 하천의 수질은 다양한 요인들에 의해 영향을 받기 때문에 요인들 간 인과관계를 이해하는 것이 중요하다. 본 연구는 인과관계를 분석할 수 있는 구조방정식모형을 통해 하천환경 특성, 유역의 개발지역 면적, 수변림의 공간적 구조가 총질소 농도에 미치는 구조적 관계 분석에 목적을 두고 수행되었다. 연구 대상지는 낙동강 대권역으로 선정하였으며, 수질 자료는 2012년 환경부의 「전국 하천 수생태계 현황 조사 및 건강성 평가」 결과를 이용하였다. 환경부의 토지피복도에서 수변림과 개발지역 데이터를 추출하여 SPSS Amos 프로그램을 통해 구조방정식모형을 추정하였다. 모형 추정 결과, 개발지역은 고도에 의해 결정되며 수변림의 공간적 구조는 개발지역 면적에 영향을 받는 것으로 나타났다. 또한, 개발지역 면적은 총질소 농도에 직접적인 영향과 수변림의 공간적 구조를 통해 간접적인 영향을 주는 것으로 나타났다. 특히 개발지역은 수변림의 LDI와 총질소 농도를 증가시키고 LPI와 PLAND를 감소시키며 LDI와 PLAND는 총질소 농도를 감소시키는 것으로 나타났다. 본 연구의 결과는 유역의 개발지역이 하천의 총질소 농도에 직간접적으로 영향을 미치나, 수변림이 공간적으로 안정적인 구조를 갖고 식생이 풍부할 경우, 개발지역이 하천 수질에 미치는 부정적인 영향을 상당히 완화시킬 수 있다는 것을 의미한다. 따라서 중장기적인 유역 관리 계획 수립 시, 하천의 수질 회복을 위해서는 유역의 개발지역 비율을 최소화하는 것이 중요하며, 유역 개발에 의한 하천 수질의 영향을 완화하기 위해서는 수변림의 양과 구조의 복원 및 관리가 필요하다.

Keywords

References

  1. Abu-Zreig, M. (2001) Factors affecting sediment trapping in vegetated filter strips: simulation study using VFSMOD. Hydrological Processes 15(8): 1477-1488. https://doi.org/10.1002/hyp.220
  2. Aguiar, F. C. and M. T. Ferreira(2005) Human-disturbed landscapes: effects on composition and integrity of riparian woody vegetation in the Tagus River basin, Portugal. Environmental Conservation 32(1): 30-41. https://doi.org/10.1017/S0376892905001992
  3. Allan, J. D. (2004) Landscapes and riverscapes: The influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics 35: 257-284. https://doi.org/10.1146/annurev.ecolsys.35.120202.110122
  4. Al-Shami, S. A., J. Heino, M. R. Che Salmah, A. Abu Hassan, A. H. Suhaila and M. R. Madrus(2013) Drivers of beta diversity of macroinvertebrate communities in tropical forest streams. Freshwater Biology 58(6): 1126-1137. https://doi.org/10.1111/fwb.12113
  5. An, K. J., S. W. Lee, S. J. Hwang, S. R. Park and S. A. Hwang(2016) Exploring the non-stationary effects of forests and developed land within watersheds on biological indicators of streams using geographically-weighted regression. Water 8(4): 120. https://doi.org/10.3390/w8040120
  6. Baker, A. (2006) Land Use And Water Quality. Encyclopedia of Hydrological Sciences.
  7. Borin, M., M. Vianello, F. Morari and G. Zanin(2005) Effectiveness of buffer strips in removing pollutants in runoff from a cultivated field in North-East Italy. Agriculture, Ecosystems and Environment 105(1-2): 101-114. https://doi.org/10.1016/j.agee.2004.05.011
  8. Broadmeadow, S. and T. R. Nisbet(2004) The effects of riparian forest management on the freshwater environment: A literature review of best management practice. Hydrology and Earth System Sciences Discussions, European Geosciences Union 3: 286-305. https://doi.org/10.5194/hess-8-286-2004
  9. Brooks, R. T., K. H. Nislow, W. H. Lowe, M. K. Wilson and D. I. King(2012) Forest succession and terrestrial-aquatic biodiversity in small forested watersheds: A review of principles, relationships and implications for management. Forestry 85(3): 315-328. https://doi.org/10.1093/forestry/cps031
  10. Carpenter, S. R., N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley and V. H. Smith(1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8(3): 559-568. https://doi.org/10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2
  11. Casotti, C. G., W. P. Kiffer Jr, L. C. Costa, J. V. Rangel, L. C. Casagrande and M. S. Moretti(2015) Assessing the importance of riparian zones conservation for leaf decomposition in streams. Natureza and Conservacao 13(2): 178-182. https://doi.org/10.1016/j.ncon.2015.11.011
  12. Chang, H.(2008) Spatial analysis of water quality trends in the Han River basin, South Korea. Water Research 42(13): 3285-3304. https://doi.org/10.1016/j.watres.2008.04.006
  13. Chellaiah, D. and C. M. Yule(2018) Effect of riparian management on stream morphometry and water quality in oil palm plantations in Borneo. Limnologica 69: 72-80. https://doi.org/10.1016/j.limno.2017.11.007
  14. Chen, J. and J. Lu(2014) Effects of land use, topography and socioeconomic factors on river water quality in a mountainous watershed with intensive agricultural production in East China. PLoS One 9(8): e102714. https://doi.org/10.1371/journal.pone.0102714
  15. Clapcott, J. E., K. J. Collier, R. G. Death, E. O. Goodwin, J. S. Harding, D. Kelly and R. G. Young(2012) Quantifying relationships between land-use gradients and structural and functional indicators of stream ecological integrity. Freshwater Biology 57(1): 74-90. https://doi.org/10.1111/j.1365-2427.2011.02696.x
  16. Collinge, S. K. (1996) Ecological consequences of habitat fragmentation: implications for landscape architecture and planning. Landscape and Urban Planning 36(1): 59-77. https://doi.org/10.1016/S0169-2046(96)00341-6
  17. de Souza Soler L., M. I. S. Escada and P. H. Verburg(2009) Quantifying deforestation and secondary forest determinants for different spatial extents in an Amazonian colonization frontier (Rondonia). Applied Geography 29(2): 182-193. https://doi.org/10.1016/j.apgeog.2008.09.005
  18. de Souza, A. L., D. G. Fonseca, R. A. Liborio and M. O. Tanaka(2013) Influence of riparian vegetation and forest structure on the water quality of rural low-order streams in SE Brazil. Forest Ecology and Management 298: 12-18. https://doi.org/10.1016/j.foreco.2013.02.022
  19. Ding, J., Y. Jiang, Q. Liu, Z. Hou, J. Liao, L. Fu and Q. Peng(2016) Influences of the land use pattern on water quality in low-order streams of the Dongjiang River basin, China: A multi-scale analysis. Science of the Total Environment 551-552: 205-216. https://doi.org/10.1016/j.scitotenv.2016.01.162
  20. ESRI (2018) ArcGIS 10.6.1. ESRI (Environmental Systems Research Institute), Redlands.
  21. Fernandes, J. D. F., A. L. de Souza and M. O. Tanaka(2014) Can the structure of a riparian forest remnant influence stream water quality? A tropical case study. Hydrobiologia 724(1): 175-185. https://doi.org/10.1007/s10750-013-1732-1
  22. Fernandes, M. R., F. C. Aguiar and M. T. Ferreira(2011) Assessing riparian vegetation structure and the influence of land use using landscape metrics and geostatistical tools. Landscape and Urban Planning 99(2): 166-177. https://doi.org/10.1016/j.landurbplan.2010.11.001
  23. Ferreira, M. T., F. C. Aguiar and C. Nogueira(2005) Changes in riparian woods over space and time: influence of environment and land use. Forest Ecology and Management 212(1-3): 145-159. https://doi.org/10.1016/j.foreco.2005.03.010
  24. Gharabaghi, B., R. Rudra, H. R. Whiteley and W. T. Dickinson(2002) Development of a management tool for vegetative filter strips. Journal of Water Management Modeling.
  25. Gonzales-Inca, C. A., R. Kalliola, T. Kirkkala and A. Lepisto(2015) Multiscale landscape pattern affecting on stream water quality in agricultural watershed, SW Finland. Water Resources Management 29(5): 1669-1682. https://doi.org/10.1007/s11269-014-0903-9
  26. He, C., S. B. Malcolm, K. A. Dahlberg and B. Fu(2000) A conceptual framework for integrating hydrological and biological indicators into watershed management. Landscape and Urban Planning 49(1-2): 25-34. https://doi.org/10.1016/S0169-2046(00)00047-5
  27. Huang, Z., L. Han, L. Zeng, W. Xiao and Y. Tian(2016) Effects of land use patterns on stream water quality: A case study of a small-scale watershed in the Three Gorges Reservoir Area, China. Environmental Science and Pollution Research 23(4): 3943-3955. https://doi.org/10.1007/s11356-015-5874-8
  28. Hwang, S. A., S. J. Hwang, S. R. Park and S. W. Lee(2016) Examining the relationships between watershed urban land use and stream water quality using linear and generalized additive models. Water 8(4): 155. https://doi.org/10.3390/w8040155
  29. Jaeger, J. A. (2000) Landscape division, splitting index, and effective mesh size: new measures of landscape fragmentation. Landscape Ecology 15(2): 115-130. https://doi.org/10.1023/A:1008129329289
  30. Kim, E., J. and S. W. Lee(2018) Structural equation model for burn severity with topographic variables and susceptible forest cover. Sustainability 10(7): 2473. https://doi.org/10.3390/su10072473
  31. Kim, J. H. (2009) An analysis of the changes in the cause-andeffect relationships between socio-economic indicators and the road network of Seoul using structural equation model. Journal of the Korean Geographical Society 44(6): 797-812.
  32. Kim, S. Y., S. W. Lee, J. W. Lee and K. J. An(2018) Exploring the relationship between prior knowledge on rain gardens and supports for adopting rain gardens using a structural equation model. Sustainability 10(5): 1500. https://doi.org/10.3390/su10051500
  33. Lee, K. S., J. K. Jung, B. Y. Heo and S. J. Byeon(2013) A study on the effect analysis for the regeneration project for the zones vulnerable to natural disaster using structural equation model. Journal of Korea Water Resources Association 46(8), 843-855. https://doi.org/10.3741/JKWRA.2013.46.8.843
  34. Lee, S. W., S. J. Hwang, S. B. Lee, H. S. Hwang and H. C. Sung(2009) Landscape ecological approach to the relationships of land use patterns in watersheds to water quality characteristics. Landscape and Urban Planning 92(2): 80-89. https://doi.org/10.1016/j.landurbplan.2009.02.008
  35. Li, M., C. Huang, Z. Zhu, H. Shi, H. Lu and S. Peng(2009). Assessing rates of forest change and fragmentation in Alabama, USA, using the vegetation change tracker model. Forest Ecology and Management 257(6): 1480-1488. https://doi.org/10.1016/j.foreco.2008.12.023
  36. Meave, J., M. Kellman, A. MacDougal and J. Rosales(1991) Riparian habitats as tropical forest refugia. Global Ecology and Biogeography Letters 69-76.
  37. Meek, C. S., D. M. Richardson and L. Mucina(2010) A river runs through it: land-use and the composition of vegetation along a riparian corridor in the Cape Floristic Region, South Africa. Biological Conservation 143(1): 156-164. https://doi.org/10.1016/j.biocon.2009.09.021
  38. Michalski, F., C. A. Peres and I. R. Lake(2008) Deforestation dynamics in a fragmented region of southern Amazonia: evaluation and future scenarios. Environmental Conservation 35(2): 93-103. https://doi.org/10.1017/S0376892908004864
  39. Ministry of Environment (2014) Nakdong Watershed Water and Environmental Management Plan(2016-2025).
  40. Nagy, C. R., B. G. Lockaby, L. Kalin and C. Anderson(2012) Effects of urbanization on stream hydrology and water quality: the Florida Gulf Coast. Hydrological Processes 26(13): 2019-2030. https://doi.org/10.1002/hyp.8336
  41. Osborne, L. L. and M. J. Wiley(1988). Empirical relationships between land use/cover and stream water quality in an agricultural watershed (US). Journal of Environmental Management 26(1): 9-27.
  42. Park, S. R., K. M. Choi and S. W. Lee(2019) Spatial variation in land use and topographic effects on water quality at the Geum River watershed. Korean Journal of Ecology and Environment 52(2): 94-104. https://doi.org/10.11614/KSL.2019.52.2.094
  43. Park, S. R., H. J. Lee, S. W. Lee, S. J. Hwang, M. S. Byeon, G. J. Joo, K. S. Jeong, D. S. Kong and M. C. Kim(2011) Relationships between land use and multi-dimensional characteristics of streams and rivers at two different scales. Annales De Limnologie-International Journal of Limnology, 47(S1): S107-S116. https://doi.org/10.1051/limn/2011023
  44. Popov, V. H., P. S. Cornish and H. Sun(2006) Vegetated biofilters: the relative importance of infiltration and adsorption in reducing loads of water-soluble herbicides in agricultural runoff. Agriculture, Ecosystems and Environment 114(2-4): 351-359. https://doi.org/10.1016/j.agee.2005.11.010
  45. Pusey, B. J. and A. H. Arthington(2003) Importance of the riparian zone to the conservation and management of freshwater fish: A review. Marine and Freshwater Research 54(1): 1-16. https://doi.org/10.1071/MF02041
  46. Rutledge, D. T. (2003). Landscape indices as measures of the effects of fragmentation: can pattern reflect process?. Wellington, New Zealand: New Zealand Department of Conservation.
  47. Scott, M. L., P. L. Nagler, E. P. Glenn, C. Valdes-Casillas, J. A. Erker, E. W. Reynolds and C. L. Jones(2009) Assessing the extent and diversity of riparian ecosystems in Sonora, Mexico. Biodiversity and Conservation 18(2): 247-269. https://doi.org/10.1007/s10531-008-9473-6
  48. Shandas, V. and M. Alberti(2009) Exploring the role of vegetation fragmentation on aquatic conditions: Linking upland with riparian areas in Puget Sound lowland streams. Landscape and Urban Planning 90(1-2): 66-75. https://doi.org/10.1016/j.landurbplan.2008.10.016
  49. Shen, Z., X. Hou, W. Li, G. Aini, L. Chen and Y. Gong(2015) Impact of landscape pattern at multiple spatial scales on water quality: A case study in a typical urbanised watershed in China. Ecological Indicators 48: 417-427. https://doi.org/10.1016/j.ecolind.2014.08.019
  50. Tanaka, M. O., J. F. Fernandes and A. L. T. Souza(2014) Can the structure of a riparian forest remnant influence stream water quality? A tropical case study. Hydrobiologia 724: 175-185. https://doi.org/10.1007/s10750-013-1732-1
  51. Taniwaki, R. H., C. C. Cassiano, S. Filoso, S. F. de Barros Ferraz, P. B. de Camargo and L. A. Martinelli(2017) Impacts of converting low-intensity pastureland to high-intensity bioenergy cropland on the water quality of tropical streams in Brazil. Science of the Total Environment 584: 339-347. https://doi.org/10.1016/j.scitotenv.2016.12.150
  52. Uriarte, M., C. B. Yackulic, Y. Lim and J. A. Arce-Nazario(2011) Influence of land use on water quality in a tropical landscape: A multi-scale analysis. Landscape Ecology 26(8): 1151-1164. https://doi.org/10.1007/s10980-011-9642-y
  53. Von Schiller, D., E. Marti, J. L. Riera, M. Ribot, J. C. Marks and F. Sabater(2008) Influence of land use on stream ecosystem function in a Mediterranean catchment. Freshwater Biology 53(12): 2600-2612. https://doi.org/10.1111/j.1365-2427.2008.02059.x
  54. Wan, R., S. Cai, H. Li, G. Yang, Z. Li and X. Nie(2014) Inferring land use and land cover impact on stream water quality using a Bayesian hierarchical modeling approach in the Xitiaoxi River Watershed, China. Journal of Environmental Management 133: 1-11. https://doi.org/10.1016/j.jenvman.2013.11.035
  55. Wang, X., F. G. Blanchet and N. Koper(2014) Measuring habitat fragmentation: An evaluation of landscape pattern metrics. Methods in Ecology and Evolution 5(7): 634-646. https://doi.org/10.1111/2041-210X.12198
  56. Woli, K. P., T. Nagumo, K. Kuramochi and R. Hatano(2004) Evaluating river water quality through land use analysis and N budget approaches in livestock farming areas. Science of the Total Environment 329(1-3): 61-74. https://doi.org/10.1016/j.scitotenv.2004.03.006
  57. Ye, L., Q. Cai, R. Liu and M. Cao(2009) The influence of topography and land use on water quality of Xiangxi River in Three Gorges Reservoir region. Environmental Geology 58(5): 937-942. https://doi.org/10.1007/s00254-008-1573-9
  58. Yirigui, Y., S. W. Lee, A. P. Nejadhashemi, M. R. Herman and J. W. Lee(2019). Relationships between riparian forest fragmentation and biological indicators of Streams. Sustainability 11(10): 2870. https://doi.org/10.3390/su11102870
  59. https://www.busan.go.kr/environment/ahnakdonggang02
  60. McGarigal, K. (2014) FRAGSTATS. Available online: http://www.umass.edu/landeco/research/fragstats/fragstats.html
  61. National Geographic Information Institute (NGII). http://www.ngii.go.kr/
  62. Water Management Information System(WAMIS). http://www.wamis.go.kr/