DOI QR코드

DOI QR Code

COLOCALIZATION OF LOCAL HOMOLOGY MODULES

  • Rezaei, Shahram (Department of Mathematics Faculty of Science Payame Noor University (PNU))
  • Received : 2019.02.02
  • Accepted : 2019.08.23
  • Published : 2020.01.31

Abstract

Let I be an ideal of Noetherian local ring (R, m) and M an artinian R-module. In this paper, we study colocalization of local homology modules. In fact we give Colocal-global Principle for the artinianness and minimaxness of local homology modules, which is a dual case of Local-global Principle for the finiteness of local cohomology modules. We define the representation dimension rI (M) of M and the artinianness dimension aI (M) of M relative to I by rI (M) = inf{i ∈ ℕ0 : HIi (M) is not representable}, and aI (M) = inf{i ∈ ℕ0 : HIi (M) is not artinian} and we will prove that i) aI (M) = rI (M) = inf{rIR𝖕 (𝖕M) : 𝖕 ∈ Spec(R)} ≥ inf{aIR𝖕 (𝖕M) : 𝖕 ∈ Spec(R)}, ii) inf{i ∈ ℕ0 : HIi (M) is not minimax} = inf{rIR𝖕 (𝖕M) : 𝖕 ∈ Spec(R) ∖ {𝔪}}. Also, we define the upper representation dimension RI (M) of M relative to I by RI (M) = sup{i ∈ ℕ0 : HIi (M) is not representable}, and we will show that i) sup{i ∈ ℕ0 : HIi (M) ≠ 0} = sup{i ∈ ℕ0 : HIi (M) is not artinian} = sup{RIR𝖕 (𝖕M) : 𝖕 ∈ Spec(R)}, ii) sup{i ∈ ℕ0 : HIi (M) is not finitely generated} = sup{i ∈ ℕ0 : HIi (M) is not minimax} = sup{RIR𝖕 (𝖕M) : 𝖕 ∈ Spec(R) ∖ {𝔪}}.

Keywords

References

  1. M. P. Brodmann and R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics, 60, Cambridge University Press, Cambridge, 1998. https://doi.org/10.1017/CBO9780511629204
  2. N. T. Cuong and T. T. Nam, The I-adic completion and local homology for Artinian modules, Math. Proc. Cambridge Philos. Soc. 131 (2001), no. 1, 61-75. https://doi.org/10.1017/S0305004100004771
  3. N. T. Cuong, On the co-localization, co-support and co-associated primes of local homology modules, Vietnam J. Math. 29 (2001), no. 4, 359-368.
  4. N. T. Cuong, A local homology theory for linearly compact modules, J. Algebra 319 (2008), no. 11, 4712-4737. https://doi.org/10.1016/j.jalgebra.2007.11.030
  5. J. P. C. Greenlees and J. P. May, Derived functors of I-adic completion and local homology, J. Algebra 149 (1992), no. 2, 438-453. https://doi.org/10.1016/0021-8693(92)90026-I
  6. D. Kirby, Dimension and length for Artinian modules, Quart. J. Math. Oxford Ser. (2) 41 (1990), no. 164, 419-429. https://doi.org/10.1093/qmath/41.4.419
  7. I. G. Macdonald, Duality over complete local rings, Topology 1 (1962), 213-235. https: //doi.org/10.1016/0040-9383(62)90104-0
  8. I. G. Macdonald, Secondary representation of modules over a commutative ring, in Symposia Mathematica, Vol. XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971), 23-43, Academic Press, London, 1973.
  9. L. Melkersson and P. Schenzel, The co-localization of an Artinian module, Proc. Edinburgh Math. Soc. (2) 38 (1995), no. 1, 121-131. https://doi.org/10.1017/S0013091500006258
  10. T. T. Nam, Co-support and coartinian modules, Algebra Colloq. 15 (2008), no. 1, 83-96. https://doi.org/10.1142/S1005386708000084
  11. T. T. Nam, Minimax modules, local homology and local cohomology, Internat. J. Math. 26 (2015), no. 12, 1550102, 16 pp. https://doi.org/10.1142/S0129167X15501025
  12. S. Rezaei, Some results on local homology and local cohomology modules, Illinois J. Math. 57 (2013), no. 1, 17-23. http://projecteuclid.org/euclid.ijm/1403534483 https://doi.org/10.1215/ijm/1403534483
  13. Z. M. Tang, Local homology theory for Artinian modules, Comm. Algebra 22 (1994), no. 5, 1675-1684. https://doi.org/10.1080/00927879408824928
  14. S. Yassemi, Coassociated primes, Comm. Algebra 23 (1995), no. 4, 1473-1498. https://doi.org/10.1080/00927879508825288
  15. D. Zelinsky, Linearly compact modules and rings, Amer. J. Math. 75 (1953), 79-90. https://doi.org/10.2307/2372616
  16. H. Zoschinger, Koatomare Moduln, Math. Z. 170 (1980), no. 3, 221-232. https://doi.org/10.1007/BF01214862
  17. H. Zoschinger, Linear-kompakte Moduln uber noetherschen Ringen, Arch. Math. (Basel) 41 (1983), no. 2, 121-130. https://doi.org/10.1007/BF01196867
  18. H. Zoschinger, Uber koassoziierte Primideale, Math. Scand. 63 (1988), no. 2, 196-211. https://doi.org/10.7146/math.scand.a-12233