DOI QR코드

DOI QR Code

NUMBER THEORETICAL PROPERTIES OF ROMIK'S DYNAMICAL SYSTEM

  • Cha, Byungchul (Department of Mathematics and Computer Science Muhlenberg College) ;
  • Kim, Dong Han (Department of Mathematics Education Dongguk University)
  • Received : 2019.02.10
  • Accepted : 2019.05.30
  • Published : 2020.01.31

Abstract

We study a dynamical system that was originally defined by Romik in 2008 using an old theorem of Berggren concerning Pythagorean triples. Romik's system is closely related to the Farey map on the unit interval which generates an additive continued fraction algorithm. We explore some number theoretical properties of the Romik system. In particular, we prove an analogue of Lagrange's theorem in the case of the Romik system on the unit quarter circle, which states that a point possesses an eventually periodic digit expansion if and only if the point is defined over a real quadratic extension field of rationals.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

Research supported by the National Research Foundation of Korea (NRF-2018R1A2B 6001624).

References

  1. R. C. Alperin, The modular tree of Pythagoras, Amer. Math. Monthly 112 (2005), no. 9, 807-816. https://doi.org/10.2307/30037602
  2. F. J. M. Barning, On Pythagorean and quasi-Pythagorean triangles and a generation process with the help of unimodular matrices, Math. Centrum Amsterdam Afd. Zuivere Wisk. 1963 (1963), ZW-011, 37 pp.
  3. B. Berggren, Pytagoreiska triangular, Tidskrift for elementar matematik, fysik och kemi 17 (1934), 129-139.
  4. B. Cha, E. Nguyen, and B. Tauber, Quadratic forms and their Berggren trees, J. Number Theory 185 (2018), 218-256. https://doi.org/10.1016/j.jnt.2017.09.003
  5. S. Chaubey, E. Fuchs, R. Hines, S. Robert, and E. Katherine, The dynamics of super-Apollonian continued fractions, Trans. Amer. Math. Soc. (2017); https://arxiv.org/abs/1703.08616.
  6. K. Conrad, Pythagorean descent, http://www.math.uconn.edu/-kconrad/blurbs/linmultialg/descentPythag.pdf.
  7. R. W. R. Darling, Differential Forms and Connections, Cambridge University Press, Cambridge, 1994. https://doi.org/10.1017/CBO9780511805110
  8. L. Fishman, D. Kleinbock, M. Dmitry, S. Keith, and D. Simmons, Intrinsic Diophantine approximation on manifolds: general theory, Trans. Amer. Math. Soc. 370 (2018), no. 1, 577-599. https://doi.org/10.1090/tran/6971
  9. K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, second edition, Graduate Texts in Mathematics, 84, Springer-Verlag, New York, 1990. https://doi.org/10.1007/978-1-4757-2103-4
  10. D. Kleinbock and K. Merrill, Rational approximation on spheres, Israel J. Math. 209 (2015), no. 1, 293-322. https://doi.org/10.1007/s11856-015-1219-z
  11. G. Panti, A general Lagrange theorem, Amer. Math. Monthly 116 (2009), no. 1, 70-74. https://doi.org/10.4169/193009709X469823
  12. G. Panti, Billiards on pythagorean triples and their Minkowski functions, arXiv:1902.00414 [math.NT].
  13. O. Perron, Die Lehre von den Ketterbruchen, Teubner, Leipzig, 1929.
  14. D. Romik, The dynamics of Pythagorean triples, Trans. Amer. Math. Soc. 360 (2008), no. 11, 6045-6064. https://doi.org/10.1090/S0002-9947-08-04467-X