DOI QR코드

DOI QR Code

Peripheral inflammatory biomarkers in Alzheimer's disease: a brief review

  • Park, Jong-Chan (Department of Biomedical Sciences, College of Medicine, Seoul National University) ;
  • Han, Sun-Ho (Department of Biomedical Sciences, College of Medicine, Seoul National University) ;
  • Mook-Jung, Inhee (Department of Biomedical Sciences, College of Medicine, Seoul National University)
  • Received : 2019.12.01
  • Published : 2020.01.31

Abstract

Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. The AD pathophysiology entails chronic inflammation involving innate immune cells including microglia, astrocytes, and other peripheral blood cells. Inflammatory mediators such as cytokines and complements are also linked to AD pathogenesis. Despite increasing evidence supporting the association between abnormal inflammation and AD, no well-established inflammatory biomarkers are currently available for AD. Since many reports have shown that abnormal inflammation precedes the outbreak of the disease, non-invasive and readily available peripheral inflammatory biomarkers should be considered as possible biomarkers for early diagnosis of AD. In this minireview, we introduce the peripheral biomarker candidates related to abnormal inflammation in AD and discuss their possible molecular mechanisms. Furthermore, we also summarize the current state of inflammatory biomarker research in clinical practice and molecular diagnostics. We believe this review will provide new insights into biomarker candidates for the early diagnosis of AD with systemic relevance to inflammation during AD pathogenesis.

Keywords

References

  1. Heneka MT, Carson MJ, El Khoury J et al (2015) Neuroinflammation in Alzheimer's disease. Lancet Neurol 14, 388-405 https://doi.org/10.1016/S1474-4422(15)70016-5
  2. Han SH, Park JC and Mook-Jung I (2016) Amyloid beta-interacting partners in Alzheimer's disease: From accomplices to possible therapeutic targets. Prog Neurobiol 137, 17-38 https://doi.org/10.1016/j.pneurobio.2015.12.004
  3. Hansen DV, Hanson JE and Sheng M (2018) Microglia in Alzheimer's disease. J Cell Biol 217, 459-472 https://doi.org/10.1083/jcb.201709069
  4. Cagnin A, Brooks DJ, Kennedy AM et al (2001) In-vivo measurement of activated microglia in dementia. Lancet 358, 461-467 https://doi.org/10.1016/S0140-6736(01)05625-2
  5. Baik SH, Kang S, Lee W et al (2019) A Breakdown in Metabolic Reprogramming Causes Microglia Dysfunction in Alzheimer's Disease. Cell Metab 30, 493-507 e496 https://doi.org/10.1016/j.cmet.2019.06.005
  6. Yasojima K, Schwab C, McGeer EG and McGeer PL (1999) Up-regulated production and activation of the complement system in Alzheimer's disease brain. Am J Pathol 154, 927-936 https://doi.org/10.1016/S0002-9440(10)65340-0
  7. Swardfager W, Lanctot K, Rothenburg L, Wong A, Cappell J and Herrmann N (2010) A meta-analysis of cytokines in Alzheimer's disease. Biol Psychiatry 68, 930-941 https://doi.org/10.1016/j.biopsych.2010.06.012
  8. Correa JD, Starling D, Teixeira AL, Caramelli P and Silva TA (2011) Chemokines in CSF of Alzheimer's disease patients. Arq Neuropsiquiatr 69, 455-459 https://doi.org/10.1590/S0004-282X2011000400009
  9. Sui X, Liu J and Yang X (2014) Cerebrospinal fluid biomarkers of Alzheimer's disease. Neurosci Bull 30, 233-242 https://doi.org/10.1007/s12264-013-1412-1
  10. Baik SH, Cha MY, Hyun YM et al (2014) Migration of neutrophils targeting amyloid plaques in Alzheimer's disease mouse model. Neurobiol Aging 35, 1286-1292 https://doi.org/10.1016/j.neurobiolaging.2014.01.003
  11. Kim MS, Kim Y, Choi H et al (2020) Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer's disease animal model. Gut 69, 283-294 https://doi.org/10.1136/gutjnl-2018-317431
  12. Akiyama H, Barger S, Barnum S et al (2000) Inflammation and Alzheimer's disease. Neurobiol Aging 21, 383-421 https://doi.org/10.1016/S0197-4580(00)00124-X
  13. Wilson CJ, Finch CE and Cohen HJ (2002) Cytokines and cognition--the case for a head-to-toe inflammatory paradigm. J Am Geriatr Soc 50, 2041-2056 https://doi.org/10.1046/j.1532-5415.2002.50619.x
  14. Solfrizzi V, D'Introno A, Colacicco AM et al (2006) Circulating biomarkers of cognitive decline and dementia. Clin Chim Acta 364, 91-112 https://doi.org/10.1016/j.cca.2005.06.015
  15. Metcalfe MJ and Figueiredo-Pereira ME (2010) Relationship between tau pathology and neuroinflammation in Alzheimer's disease. Mt Sinai J Med 77, 50-58 https://doi.org/10.1002/msj.20163
  16. Holmes C, Cunningham C, Zotova E et al (2009) Systemic inflammation and disease progression in Alzheimer disease. Neurology 73, 768-774 https://doi.org/10.1212/wnl.0b013e3181b6bb95
  17. Leung R, Proitsi P, Simmons A et al (2013) Inflammatory proteins in plasma are associated with severity of Alzheimer's disease. PLoS One 8, e64971 https://doi.org/10.1371/journal.pone.0064971
  18. Motta M, Imbesi R, Di Rosa M, Stivala F and Malaguarnera L (2007) Altered plasma cytokine levels in Alzheimer's disease: correlation with the disease progression. Immunol Lett 114, 46-51 https://doi.org/10.1016/j.imlet.2007.09.002
  19. Dionisio-Santos DA, Olschowka JA and O'Banion MK (2019) Exploiting microglial and peripheral immune cell crosstalk to treat Alzheimer's disease. J Neuroinflammation 16, 74 https://doi.org/10.1186/s12974-019-1453-0
  20. Dinarello CA and Wolff SM (1993) The role of interleukin-1 in disease. N Engl J Med 328, 106-113 https://doi.org/10.1056/NEJM199301143280207
  21. Besedovsky H, del Rey A, Sorkin E and Dinarello CA (1986) Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. Science 233, 652-654 https://doi.org/10.1126/science.3014662
  22. Shaftel SS, Griffin WS and O'Banion MK (2008) The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective. J Neuroinflammation 5, 7 https://doi.org/10.1186/1742-2094-5-7
  23. Nicklin MJ, Weith A and Duff GW (1994) A physical map of the region encompassing the human interleukin-1 alpha, interleukin-1 beta, and interleukin-1 receptor antagonist genes. Genomics 19, 382-384 https://doi.org/10.1006/geno.1994.1076
  24. Allan SM, Tyrrell PJ and Rothwell NJ (2005) Interleukin-1 and neuronal injury. Nat Rev Immunol 5, 629-640 https://doi.org/10.1038/nri1664
  25. Patel HC, Boutin H and Allan SM (2003) Interleukin-1 in the brain: mechanisms of action in acute neurodegeneration. Ann N Y Acad Sci 992, 39-47 https://doi.org/10.1111/j.1749-6632.2003.tb03136.x
  26. Griffin WS, Stanley LC, Ling C et al (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A 86, 7611-7615 https://doi.org/10.1073/pnas.86.19.7611
  27. Sheng JG, Jones RA, Zhou XQ et al (2001) Interleukin-1 promotion of MAPK-p38 overexpression in experimental animals and in Alzheimer's disease: potential significance for tau protein phosphorylation. Neurochem Int 39, 341-348 https://doi.org/10.1016/S0197-0186(01)00041-9
  28. Schneider H, Pitossi F, Balschun D, Wagner A, del Rey A and Besedovsky HO (1998) A neuromodulatory role of interleukin-1beta in the hippocampus. Proc Natl Acad Sci U S A 95, 7778-7783 https://doi.org/10.1073/pnas.95.13.7778
  29. Murray CA and Lynch MA (1998) Evidence that increased hippocampal expression of the cytokine interleukin-1 beta is a common trigger for age- and stress-induced impairments in long-term potentiation. J Neurosci 18, 2974-2981 https://doi.org/10.1523/JNEUROSCI.18-08-02974.1998
  30. Li Y, Liu L, Kang J et al (2000) Neuronal-glial interactions mediated by interleukin-1 enhance neuronal acetylcholinesterase activity and mRNA expression. J Neurosci 20, 149-155 https://doi.org/10.1523/jneurosci.20-01-00149.2000
  31. Han SH, Park JC, Byun MS et al (2019) Blood acetylcholinesterase level is a potential biomarker for the early detection of cerebral amyloid deposition in cognitively normal individuals. Neurobiol Aging 73, 21-29 https://doi.org/10.1016/j.neurobiolaging.2018.09.001
  32. Su F, Bai F and Zhang Z (2016) Inflammatory Cytokines and Alzheimer's Disease: A Review from the Perspective of Genetic Polymorphisms. Neurosci Bull 32, 469-480 https://doi.org/10.1007/s12264-016-0055-4
  33. Mrak RE and Griffin WS (2000) Interleukin-1 and the immunogenetics of Alzheimer disease. J Neuropathol Exp Neurol 59, 471-476 https://doi.org/10.1093/jnen/59.6.471
  34. Alvarez XA, Franco A, Fernandez-Novoa L and Cacabelos R (1996) Blood levels of histamine, IL-1 beta, and TNF-alpha in patients with mild to moderate Alzheimer disease. Mol Chem Neuropathol 29, 237-252 https://doi.org/10.1007/BF02815005
  35. Licastro F, Pedrini S, Caputo L et al (2000) Increased plasma levels of interleukin-1, interleukin-6 and alpha-1-antichymotrypsin in patients with Alzheimer's disease: peripheral inflammation or signals from the brain? J Neuroimmunol 103, 97-102 https://doi.org/10.1016/S0165-5728(99)00226-X
  36. De Luigi A, Pizzimenti S, Quadri P et al (2002) Peripheral inflammatory response in Alzheimer's disease and multiinfarct dementia. Neurobiol Dis 11, 308-314 https://doi.org/10.1006/nbdi.2002.0556
  37. Forlenza OV, Diniz BS, Talib LL et al (2009) Increased serum IL-1beta level in Alzheimer's disease and mild cognitive impairment. Dement Geriatr Cogn Disord 28, 507-512 https://doi.org/10.1159/000255051
  38. Angelopoulos P, Agouridaki H, Vaiopoulos H et al (2008) Cytokines in Alzheimer's disease and vascular dementia. Int J Neurosci 118, 1659-1672 https://doi.org/10.1080/00207450701392068
  39. Italiani P, Puxeddu I, Napoletano S et al (2018) Circulating levels of IL-1 family cytokines and receptors in Alzheimer's disease: new markers of disease progression? J Neuroinflammation 15, 342 https://doi.org/10.1186/s12974-018-1376-1
  40. Lanzrein AS, Johnston CM, Perry VH, Jobst KA, King EM and Smith AD (1998) Longitudinal study of inflammatory factors in serum, cerebrospinal fluid, and brain tissue in Alzheimer disease: interleukin-1beta, interleukin-6, interleukin-1 receptor antagonist, tumor necrosis factoralpha, the soluble tumor necrosis factor receptors I and II, and alpha1-antichymotrypsin. Alzheimer Dis Assoc Disord 12, 215-227 https://doi.org/10.1097/00002093-199809000-00016
  41. Pirttila T, Mehta PD, Frey H and Wisniewski HM (1994) Alpha 1-antichymotrypsin and IL-1 beta are not increased in CSF or serum in Alzheimer's disease. Neurobiol Aging 15, 313-317 https://doi.org/10.1016/0197-4580(94)90026-4
  42. Yasutake C, Kuroda K, Yanagawa T, Okamura T and Yoneda H (2006) Serum BDNF, TNF-alpha and IL-1beta levels in dementia patients: comparison between Alzheimer's disease and vascular dementia. Eur Arch Psychiatry Clin Neurosci 256, 402-406 https://doi.org/10.1007/s00406-006-0652-8
  43. Bonotis K, Krikki E, Holeva V, Aggouridaki C, Costa V and Baloyannis S (2008) Systemic immune aberrations in Alzheimer's disease patients. J Neuroimmunol 193, 183-187 https://doi.org/10.1016/j.jneuroim.2007.10.020
  44. Bauer J, Strauss S, Schreiter-Gasser U et al (1991) Interleukin-6 and alpha-2-macroglobulin indicate an acute-phase state in Alzheimer's disease cortices. FEBS Lett 285, 111-114 https://doi.org/10.1016/0014-5793(91)80737-N
  45. Huell M, Strauss S, Volk B, Berger M and Bauer J (1995) Interleukin-6 is present in early stages of plaque formation and is restricted to the brains of Alzheimer's disease patients. Acta Neuropathol 89, 544-551 https://doi.org/10.1007/BF00571510
  46. Lee KS, Chung JH, Choi TK, Suh SY, Oh BH and Hong CH (2009) Peripheral cytokines and chemokines in Alzheimer's disease. Dement Geriatr Cogn Disord 28, 281-287 https://doi.org/10.1159/000245156
  47. Sun YX, Minthon L, Wallmark A, Warkentin S, Blennow K and Janciauskiene S (2003) Inflammatory markers in matched plasma and cerebrospinal fluid from patients with Alzheimer's disease. Dement Geriatr Cogn Disord 16, 136-144 https://doi.org/10.1159/000071001
  48. Wu YY, Hsu JL, Wang HC, Wu SJ, Hong CJ and Cheng IH (2015) Alterations of the Neuroinflammatory Markers IL-6 and TRAIL in Alzheimer's Disease. Dement Geriatr Cogn Dis Extra 5, 424-434 https://doi.org/10.1159/000439214
  49. Singh VK and Guthikonda P (1997) Circulating cytokines in Alzheimer's disease. J Psychiatr Res 31, 657-660 https://doi.org/10.1016/S0022-3956(97)00023-X
  50. Angelis P, Scharf S, Mander A, Vajda F and Christophidis N (1998) Serum interleukin-6 and interleukin-6 soluble receptor in Alzheimer's disease. Neurosci Lett 244, 106-108 https://doi.org/10.1016/S0304-3940(98)00136-0
  51. van Duijn CM, Hofman A and Nagelkerken L (1990) Serum levels of interleukin-6 are not elevated in patients with Alzheimer's disease. Neurosci Lett 108, 350-354 https://doi.org/10.1016/0304-3940(90)90666-W
  52. Garlind A, Brauner A, Hojeberg B, Basun H and Schultzberg M (1999) Soluble interleukin-1 receptor type II levels are elevated in cerebrospinal fluid in Alzheimer's disease patients. Brain Res 826, 112-116 https://doi.org/10.1016/S0006-8993(99)01092-6
  53. Tarkowski E, Liljeroth AM, Minthon L, Tarkowski A, Wallin A and Blennow K (2003) Cerebral pattern of proand anti-inflammatory cytokines in dementias. Brain Res Bull 61, 255-260 https://doi.org/10.1016/S0361-9230(03)00088-1
  54. Richartz E, Stransky E, Batra A et al (2005) Decline of immune responsiveness: a pathogenetic factor in Alzheimer's disease? J Psychiatr Res 39, 535-543 https://doi.org/10.1016/j.jpsychires.2004.12.005
  55. Yamada K, Furusawa S, Saito K et al (1995) Concurrent use of granulocyte colony-stimulating factor with low-dose cytosine arabinoside and aclarubicin for previously treated acute myelogenous leukemia: a pilot study. Leukemia 9, 10-14
  56. Papassotiropoulos A, Bagli M, Jessen F et al (1999) A genetic variation of the inflammatory cytokine interleukin-6 delays the initial onset and reduces the risk for sporadic Alzheimer's disease. Ann Neurol 45, 666-668 https://doi.org/10.1002/1531-8249(199905)45:5<666::AID-ANA18>3.0.CO;2-3
  57. Grimaldi LM, Casadei VM, Ferri C et al (2000) Association of early-onset Alzheimer's disease with an interleukin-1alpha gene polymorphism. Ann Neurol 47, 361-365 https://doi.org/10.1002/1531-8249(200003)47:3<361::AID-ANA12>3.0.CO;2-N
  58. Nicoll JA, Mrak RE, Graham DI et al (2000) Association of interleukin-1 gene polymorphisms with Alzheimer's disease. Ann Neurol 47, 365-368 https://doi.org/10.1002/1531-8249(200003)47:3<365::AID-ANA13>3.0.CO;2-G
  59. Perry VH, Cunningham C and Holmes C (2007) Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol 7, 161-167 https://doi.org/10.1038/nri2015
  60. Zhao M, Cribbs DH, Anderson AJ et al (2003) The induction of the TNFalpha death domain signaling pathway in Alzheimer's disease brain. Neurochem Res 28, 307-318 https://doi.org/10.1023/A:1022337519035
  61. Lue LF, Walker DG and Rogers J (2001) Modeling microglial activation in Alzheimer's disease with human postmortem microglial cultures. Neurobiol Aging 22, 945-956 https://doi.org/10.1016/S0197-4580(01)00311-6
  62. Janelsins MC, Mastrangelo MA, Park KM et al (2008) Chronic neuron-specific tumor necrosis factor-alpha expression enhances the local inflammatory environment ultimately leading to neuronal death in 3xTg-AD mice. Am J Pathol 173, 1768-1782 https://doi.org/10.2353/ajpath.2008.080528
  63. McAlpine FE and Tansey MG (2008) Neuroinflammation and tumor necrosis factor signaling in the pathophysiology of Alzheimer's disease. J Inflamm Res 1, 29-39
  64. Brosseron F, Krauthausen M, Kummer M and Heneka MT (2014) Body fluid cytokine levels in mild cognitive impairment and Alzheimer's disease: a comparative overview. Mol Neurobiol 50, 534-544 https://doi.org/10.1007/s12035-014-8657-1
  65. Tarkowski E, Blennow K, Wallin A and Tarkowski A (1999) Intracerebral production of tumor necrosis factor-alpha, a local neuroprotective agent, in Alzheimer disease and vascular dementia. J Clin Immunol 19, 223-230 https://doi.org/10.1023/A:1020568013953
  66. Magaki S, Mueller C, Dickson C and Kirsch W (2007) Increased production of inflammatory cytokines in mild cognitive impairment. Exp Gerontol 42, 233-240 https://doi.org/10.1016/j.exger.2006.09.015
  67. Bruunsgaard H, Andersen-Ranberg K, Jeune B, Pedersen AN, Skinhoj P and Pedersen BK (1999) A high plasma concentration of TNF-alpha is associated with dementia in centenarians. J Gerontol A Biol Sci Med Sci 54, M357-364 https://doi.org/10.1093/gerona/54.7.M357
  68. Fillit H, Ding WH, Buee L et al (1991) Elevated circulating tumor necrosis factor levels in Alzheimer's disease. Neurosci Lett 129, 318-320 https://doi.org/10.1016/0304-3940(91)90490-K
  69. Aliberti J, Reis e Sousa C, Schito M et al (2000) CCR5 provides a signal for microbial induced production of IL-12 by CD8 alpha+ dendritic cells. Nat Immunol 1, 83-87 https://doi.org/10.1038/76957
  70. Schulz O, Edwards AD, Schito M et al (2000) CD40 triggering of heterodimeric IL-12 p70 production by dendritic cells in vivo requires a microbial priming signal. Immunity 13, 453-462 https://doi.org/10.1016/S1074-7613(00)00045-5
  71. Chang HD and Radbruch A (2007) The pro- and anti-inflammatory potential of interleukin-12. Ann N Y Acad Sci 1109, 40-46 https://doi.org/10.1196/annals.1398.006
  72. Rentzos M, Paraskevas GP, Kapaki E et al (2006) Interleukin-12 is reduced in cerebrospinal fluid of patients with Alzheimer's disease and frontotemporal dementia. J Neurol Sci 249, 110-114 https://doi.org/10.1016/j.jns.2006.05.063
  73. Vom Berg J, Prokop S, Miller KR et al (2012) Inhibition of IL-12/IL-23 signaling reduces Alzheimer's disease-like pathology and cognitive decline. Nat Med 18, 1812-1819 https://doi.org/10.1038/nm.2965
  74. Town T, Vendrame M, Patel A et al (2002) Reduced Th1 and enhanced Th2 immunity after immunization with Alzheimer's beta-amyloid(1-42). J Neuroimmunol 132, 49-59 https://doi.org/10.1016/S0165-5728(02)00307-7
  75. te Velde AA, Huijbens RJ, Heije K, de Vries JE and Figdor CG (1990) Interleukin-4 (IL-4) inhibits secretion of IL-1 beta, tumor necrosis factor alpha, and IL-6 by human monocytes. Blood 76, 1392-1397 https://doi.org/10.1182/blood.v76.7.1392.1392
  76. Gambi F, Reale M, Iarlori C et al (2004) Alzheimer patients treated with an AchE inhibitor show higher IL-4 and lower IL-1 beta levels and expression in peripheral blood mononuclear cells. J Clin Psychopharmacol 24, 314-321 https://doi.org/10.1097/01.jcp.0000125683.74595.2f
  77. Lugaresi A, Di Iorio A, Iarlori C et al (2004) IL-4 in vitro production is upregulated in Alzheimer's disease patients treated with acetylcholinesterase inhibitors. Exp Gerontol 39, 653-657 https://doi.org/10.1016/j.exger.2003.08.012
  78. Strle K, Zhou JH, Shen WH et al (2001) Interleukin-10 in the brain. Crit Rev Immunol 21, 427-449
  79. Fung TC, Olson CA and Hsiao EY (2017) Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 20, 145-155 https://doi.org/10.1038/nn.4476
  80. Kau AL, Ahern PP, Griffin NW, Goodman AL and Gordon JI (2011) Human nutrition, the gut microbiome and the immune system. Nature 474, 327-336 https://doi.org/10.1038/nature10213
  81. Kowalski K and Mulak A (2019) Brain-Gut-Microbiota Axis in Alzheimer's Disease. J Neurogastroenterol Motil 25, 48-60 https://doi.org/10.5056/jnm18087
  82. Bonfili L, Cecarini V, Berardi S et al (2017) Microbiota modulation counteracts Alzheimer's disease progression influencing neuronal proteolysis and gut hormones plasma levels. Sci Rep 7, 2426 https://doi.org/10.1038/s41598-017-02587-2
  83. Arosio B, D'Addario C, Gussago C et al (2014) Peripheral blood mononuclear cells as a laboratory to study dementia in the elderly. Biomed Res Int 2014, 169203 https://doi.org/10.1155/2014/169203
  84. Ziegler-Heitbrock L (2007) The CD14+ CD16+ blood monocytes: their role in infection and inflammation. J Leukoc Biol 81, 584-592 https://doi.org/10.1189/jlb.0806510
  85. Ciccocioppo F, Lanuti P, Pierdomenico L et al (2019) The Characterization of Regulatory T-Cell Profiles in Alzheimer's Disease and Multiple Sclerosis. Sci Rep 9, 8788 https://doi.org/10.1038/s41598-019-45433-3
  86. Rezai-Zadeh K, Gate D, Szekely CA and Town T (2009) Can peripheral leukocytes be used as Alzheimer's disease biomarkers? Expert Rev Neurother 9, 1623-1633 https://doi.org/10.1586/ern.09.118
  87. Chen SH, Bu XL, Jin WS et al (2017) Altered peripheral profile of blood cells in Alzheimer disease: A hospitalbased case-control study. Medicine (Baltimore) 96, e6843 https://doi.org/10.1097/md.0000000000006843
  88. Lunnon K, Ibrahim Z, Proitsi P et al (2012) Mitochondrial dysfunction and immune activation are detectable in early Alzheimer's disease blood. J Alzheimers Dis 30, 685-710 https://doi.org/10.3233/JAD-2012-111592
  89. Naert G and Rivest S (2013) A deficiency in CCR2+ monocytes: the hidden side of Alzheimer's disease. J Mol Cell Biol 5, 284-293 https://doi.org/10.1093/jmcb/mjt028
  90. Richartz-Salzburger E, Batra A, Stransky E et al (2007) Altered lymphocyte distribution in Alzheimer's disease. J Psychiatr Res 41, 174-178 https://doi.org/10.1016/j.jpsychires.2006.01.010
  91. Aiyaz M, Lupton MK, Proitsi P, Powell JF and Lovestone S (2012) Complement activation as a biomarker for Alzheimer's disease. Immunobiology 217, 204-215 https://doi.org/10.1016/j.imbio.2011.07.023
  92. Kolev MV, Ruseva MM, Harris CL, Morgan BP and Donev RM (2009) Implication of complement system and its regulators in Alzheimer's disease. Curr Neuropharmacol 7, 1-8 https://doi.org/10.2174/157015909787602805
  93. Kamboh MI, Demirci FY, Wang X et al (2012) Genome-wide association study of Alzheimer's disease. Transl Psychiatry 2, e117 https://doi.org/10.1038/tp.2012.45
  94. Kok EH, Luoto T, Haikonen S, Goebeler S, Haapasalo H and Karhunen PJ (2011) CLU, CR1 and PICALM genes associate with Alzheimer's-related senile plaques. Alzheimers Res Ther 3, 12 https://doi.org/10.1186/alzrt71
  95. Bradt BM, Kolb WP and Cooper NR (1998) Complement-dependent proinflammatory properties of the Alzheimer's disease beta-peptide. J Exp Med 188, 431-438 https://doi.org/10.1084/jem.188.3.431
  96. Hakobyan S, Harding K, Aiyaz M et al (2016) Complement Biomarkers as Predictors of Disease Progression in Alzheimer's Disease. J Alzheimers Dis 54, 707-716 https://doi.org/10.3233/JAD-160420
  97. Weinstein G, Beiser AS, Preis SR et al (2016) Plasma clusterin levels and risk of dementia, Alzheimer's disease, and stroke. Alzheimers Dement (Amst) 3, 103-109 https://doi.org/10.1016/j.dadm.2016.06.005
  98. Williams MA, Haughton D, Stevenson M, Craig D, Passmore AP and Silvestri G (2015) Plasma Complement factor H in Alzheimer's Disease. J Alzheimers Dis 45, 369-372 https://doi.org/10.3233/JAD-142742
  99. Thambisetty M, Simmons A, Hye A et al (2011) Plasma biomarkers of brain atrophy in Alzheimer's disease. PLoS One 6, e28527 https://doi.org/10.1371/journal.pone.0028527
  100. Haure-Mirande JV, Wang M, Audrain M et al (2019) Integrative approach to sporadic Alzheimer's disease: deficiency of TYROBP in cerebral Abeta amyloidosis mouse normalizes clinical phenotype and complement subnetwork molecular pathology without reducing Abeta burden. Mol Psychiatry 24, 431-446 https://doi.org/10.1038/s41380-018-0255-6
  101. Efthymiou AG and Goate AM (2017) Late onset Alzheimer's disease genetics implicates microglial pathways in disease risk. Mol Neurodegener 12, 43 https://doi.org/10.1186/s13024-017-0184-x
  102. Lambert JC, Heath S, Even G et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat Genet 41, 1094-1099 https://doi.org/10.1038/ng.439
  103. Belbin O, Dunn JL, Chappell S et al (2008) A SNP in the ACT gene associated with astrocytosis and rapid cognitive decline in AD. Neurobiol Aging 29, 1167-1176 https://doi.org/10.1016/j.neurobiolaging.2007.02.021
  104. Toral-Rios D, Franco-Bocanegra D, Rosas-Carrasco O et al (2015) Evaluation of inflammation-related genes polymorphisms in Mexican with Alzheimer's disease: a pilot study. Front Cell Neurosci 9, 148 https://doi.org/10.3389/fncel.2015.00148
  105. Morgan BP (2018) Complement in the pathogenesis of Alzheimer's disease. Semin Immunopathol 40, 113-124 https://doi.org/10.1007/s00281-017-0662-9
  106. Jin C, Li W, Yuan J, Xu W and Cheng Z (2012) Association of the CR1 polymorphism with late-onset Alzheimer's disease in Chinese Han populations: a meta-analysis. Neurosci Lett 527, 46-49 https://doi.org/10.1016/j.neulet.2012.08.032
  107. Liu G, Wang H, Liu J et al (2014) The CLU gene rs11136000 variant is significantly associated with Alzheimer's disease in Caucasian and Asian populations. Neuromolecular Med 16, 52-60 https://doi.org/10.1007/s12017-013-8250-1
  108. Zhu R, Liu X and He Z (2018) Association between CLU gene rs11136000 polymorphism and Alzheimer's disease: an updated meta-analysis. Neurol Sci 39, 679-689 https://doi.org/10.1007/s10072-018-3259-8
  109. Tan L, Wang HF, Tan MS et al (2016) Effect of CLU genetic variants on cerebrospinal fluid and neuroimaging markers in healthy, mild cognitive impairment and Alzheimer's disease cohorts. Sci Rep 6, 26027 https://doi.org/10.1038/srep26027
  110. Xing YY, Yu JT, Cui WZ et al (2012) Blood clusterin levels, rs9331888 polymorphism, and the risk of Alzheimer's disease. J Alzheimers Dis 29, 515-519 https://doi.org/10.3233/JAD-2011-111844
  111. Zhou J, Fonseca MI, Pisalyaput K and Tenner AJ (2008) Complement C3 and C4 expression in C1q sufficient and deficient mouse models of Alzheimer's disease. J Neurochem 106, 2080-2092 https://doi.org/10.1111/j.1471-4159.2008.05558.x
  112. Fonseca MI, Chu S, Pierce AL et al (2016) Analysis of the Putative Role of CR1 in Alzheimer's Disease: Genetic Association, Expression and Function. PLoS One 11, e0149792 https://doi.org/10.1371/journal.pone.0149792
  113. Foster EM, Dangla-Valls A, Lovestone S, Ribe EM and Buckley NJ (2019) Clusterin in Alzheimer's Disease: Mechanisms, Genetics, and Lessons From Other Pathologies. Front Neurosci 13, 164 https://doi.org/10.3389/fnins.2019.00164
  114. Thambisetty M, Simmons A, Velayudhan L et al (2010) Association of plasma clusterin concentration with severity, pathology, and progression in Alzheimer disease. Arch Gen Psychiatry 67, 739-748 https://doi.org/10.1001/archgenpsychiatry.2010.78
  115. Jongbloed W, van Dijk KD, Mulder SD et al (2015) Clusterin Levels in Plasma Predict Cognitive Decline and Progression to Alzheimer's Disease. J Alzheimers Dis 46, 1103-1110 https://doi.org/10.3233/JAD-150036
  116. Winston CN, Goetzl EJ, Schwartz JB, Elahi FM and Rissman RA (2019) Complement protein levels in plasma astrocyte-derived exosomes are abnormal in conversion from mild cognitive impairment to Alzheimer's disease dementia. Alzheimers Dement (Amst) 11, 61-66 https://doi.org/10.1016/j.dadm.2018.11.002
  117. Daborg J, Andreasson U, Pekna M et al (2012) Cerebrospinal fluid levels of complement proteins C3, C4 and CR1 in Alzheimer's disease. J Neural Transm (Vienna) 119, 789-797 https://doi.org/10.1007/s00702-012-0797-8
  118. Bennett S, Grant M, Creese AJ et al (2012) Plasma levels of complement 4a protein are increased in Alzheimer's disease. Alzheimer Dis Assoc Disord 26, 329-334 https://doi.org/10.1097/WAD.0b013e318239dcbd
  119. Yarchoan M, Louneva N, Xie SX et al (2013) Association of plasma C-reactive protein levels with the diagnosis of Alzheimer's disease. J Neurol Sci 333, 9-12 https://doi.org/10.1016/j.jns.2013.05.028
  120. Locascio JJ, Fukumoto H, Yap L et al (2008) Plasma amyloid beta-protein and C-reactive protein in relation to the rate of progression of Alzheimer disease. Arch Neurol 65, 776-785 https://doi.org/10.1001/archneur.65.6.776
  121. Watanabe Y, Kitamura K, Nakamura K et al (2016) Elevated C-Reactive Protein Is Associated with Cognitive Decline in Outpatients of a General Hospital: The Project in Sado for Total Health (PROST). Dement Geriatr Cogn Dis Extra 6, 10-19 https://doi.org/10.1159/000442585
  122. Vintimilla R, Hall J, Johnson L and O'Bryant S (2019) The relationship of CRP and cognition in cognitively normal older Mexican Americans: A cross-sectional study of the HABLE cohort. Medicine (Baltimore) 98, e15605 https://doi.org/10.1097/md.0000000000015605
  123. Park JC, Han SH, Cho HJ et al (2017) Chemically treated plasma Abeta is a potential blood-based biomarker for screening cerebral amyloid deposition. Alzheimers Res Ther 9, 20 https://doi.org/10.1186/s13195-017-0248-8