DOI QR코드

DOI QR Code

Gas Permeation Characteristics of PEBAX2533 Membrane Containing PEGDA and ZIF-8

PEGDA와 ZIF-8을 함유한 PEBAX2533 막의 기체투과 특성

  • Kim, Sun Hee (Department of Chemical Engineering and Materials Science, Sangmyung University) ;
  • Hong, Se Ryeong (Kyedang College of General Educations, Sangmyung University) ;
  • Lee, Hyun Kyung (Department of Chemical Engineering and Materials Science, Sangmyung University)
  • 김선희 (상명대학교 화공신소재학과) ;
  • 홍세령 (상명대학교 계당교양교육원) ;
  • 이현경 (상명대학교 화공신소재학과)
  • Received : 2020.01.03
  • Accepted : 2020.02.08
  • Published : 2020.02.29

Abstract

In this study, poly (ether-block-amide) (PEBAX)/poly (ethylene) glycoldiacrylate (PEGDA)/zeolitic imidazolate framework-8 (ZIF-8)-polyethersulfone (PES) composite membranes were prepared. The gas permeation properties of N2 and CO2 were investigated for each composite membrane. First, the gas permeability in the PEBAX/PEGDA-PES composite membrane decreased with increasing PEGDA content for each molecular weight at PEGDA250, PEGDA575, and PEGDA-700 g/mol. The CO2/N2 selectivity showed a constant value and gradually increased with increasing PEGDA content after 30 wt% PEGDA, and PEBAX/PEGDA250 50 wt%-PES prepared by adding PEGDA250 g/mol 50 wt% showed a selectivity of 15.1. This is because as the PEGDA content increases, the number of diacrylate groups increases, and the CO2 affinity due to the ether structure of PEGDA increases. Gas permeation properties according to ZIF-8 were investigated for composite membranes of PEGDA 0 to 30 wt%, with CO2/N2 selectivity almost constant for each molecular weight. The permeability of N2 and CO2 gradually increased with increasing ZIF-8 content, and CO2/N2 selectivity was the highest at 3.4 in PEBAX/PEGDA250 g/mol 30 wt%/ZIF-8 20 wt%-PES composite membrane.

본 연구에서는 poly(ether-block-amide) (PEBAX)/poly(ethylene) glycoldiacrylate (PEGDA)/zeolitic imidazolate framework-8 (ZIF-8)-polyethersulfone (PES) 복합막을 제조하여 N2와 CO2의 기체투과 성질을 조사하였다. 각 분자량별 PEGDA 함량 증가에 따른 PEBAX/PEGDA-PES 복합막의 기체 투과도는 감소하였고, CO2/N2 선택도는 거의 일정한 값을 보이다가 PEGDA 30 wt% 이후 점차 증가하였다. 특히 PEGDA250 g/mol 50 wt%가 첨가되어 제조된 PEBAX/PEGDA250 g/mol 50 wt%-PES의 경우 15.1의 선택도를 보였다. 그리고 각 분자량별로 CO2/N2 선택도가 거의 일정한 범위인 PEGDA 0~30 wt%의 복합막에 대해 ZIF-8에 따른 기체투과 성질을 조사하였다. 대체적으로 첨가되는 ZIF-8 함량이 증가할수록 N2와 CO2의 투과도가 점차 증가하였고, CO2/N2 선택도는 PEBAX/PEGDA250 g/mol 30 wt%/ZIF-8 20 wt%-PES 복합막에서 3.4로 가장 높았다.

Keywords

References

  1. M. R. Raupach, G. Marland, P. Ciais, C. L Quere, J. G. Canadell, G. Klepper, and C. B. Field, "Global and regional drivers of accelerating $CO_2$ emissions", Proc. Natl. Acad. Sci. U.S.A., 104, 10288 (2007). https://doi.org/10.1073/pnas.0700609104
  2. L. Ge, Z. Zhu, and V. Rudolph, "Enhanced gas permeability by fabricating functionalized multi-walled carbon nanotubes and polyethersulfone nanocomposite membrane", Sep. Purif. Technol., 78, 76 (2011). https://doi.org/10.1016/j.seppur.2011.01.024
  3. F. H. Akhtar, M. Kumar, and K. V. Peinemann, "PEBAX1657/graphene oxide composite membranes for improved water vapor separation", J. Membr. Sci., 525, 187 (2017). https://doi.org/10.1016/j.memsci.2016.10.045
  4. M. Shah, M. C. McCarthy, S. Sachdeva, A. K. Lee, and H. K. Jeong, "Current status of metal-organic framework membranes for gas separations: Promises and challenges", Ind. Eng. Chem. Res., 51, 2179 (2012). https://doi.org/10.1021/ie202038m
  5. J. H. Lee and J. Kim, "Research trends of metal-organic framework membranes: Fabrication methods and gas separation applications", Membr. J., 25, 465 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.6.465
  6. V. M. A. Melgar, J. Kim, and M. R. Othman, "Zeolitic imidazolate framework membranes for gas separation: A review of synthesis methods and gas separation performance", J. Ind. Eng. Chem., 28, 1 (2015). https://doi.org/10.1016/j.jiec.2015.03.006
  7. A. B. Shelekhin, E. J. Grosgogeat, and S. T. Hwang, "Gas separation properties of a new polymer/inorganic composite membrane", J. Membr. Sci., 66, 129 (1992). https://doi.org/10.1016/0376-7388(92)87003-G
  8. S. Sridhar, R. Suryamurali, B. Smitha, and T. M. Aminabhavi, "Development of crosslinked poly(ether-block-amide) membrane for $CO_2/CH_4$ separation", Colloids Surf. A., 297, 267 (2007). https://doi.org/10.1016/j.colsurfa.2006.10.054
  9. V. Bondar, B. D. Freeman, and I. Pinnau, "Gas transport properties of poly(ether-b-amide) segmented block copolymers", J. Polym. Sci.(Part B: Polym. Phys.), 38, 2051 (2000). https://doi.org/10.1002/1099-0488(20000801)38:15<2051::AID-POLB100>3.0.CO;2-D
  10. A. Car, C. Stropnik, W. Yave, and K. Peinemann, "Pebax/polyethylene glycol blend thin film composite membranes for $CO_2$ separation: Performance with mixed gases", Sep. Purif. Technol., 62, 110 (2008). https://doi.org/10.1016/j.seppur.2008.01.001
  11. H. Kim, C. Lim, and S. Hong, "Gas permeation properties of organic-inorganic hybrid membranes prepared from hydroxyl terminated polyether and 3-isocyanatopropyltriethoxysilane", J. Sol-Gel Sci. Technol., 36, 213 (2005). https://doi.org/10.1007/s10971-005-3782-y
  12. H. B. Kim, M. W. Lee, W. K. Park, S. J. Lee, H. K. Lee, and S. H. Lee, "Permeation properties of single gases ($N_2$, $O_2$, $SF_6$, $CF_4$) through PDMS and PEBAX membranes", Membr. J., 22, 201 (2012).
  13. C. H. Hyung, C. D. Park, K. H. Kim, J. W. Rhim, T. S. Hwang, and H. K. Lee, "A study on the $SO_2/CO_2/N_2$ mixed gas separation using polyetherimide/PEBAX/PEG composite hollow fiber membrane", Membr. J., 22, 404 (2012).
  14. K. Kim, S. Park, W. So, D. Ahn, and S. Moon, "$CO_2$separation performances of composite membranes of 6FDA-based polyimides with a polar group", J. Membr. Sci., 211, 41 (2003). https://doi.org/10.1016/S0376-7388(02)00316-2
  15. H. J. Kim, "Gas permeation properties of carbon dioxide and methane for $PEBAX^{TM}$/TEOS hybrid membranes", Korean Chem. Eng. Res., 49, 460 (2011). https://doi.org/10.9713/kcer.2011.49.4.460
  16. M. M. Rahman, V. Filiz, S. Shishatskiy, C. Abetz, S. Neumann, S Bolmer, M. M. Khan, and V. Abetz, "$PEBAX^{(R)}$ with PEG functionalized POSS as nanocomposite membranes for $CO_2$ separation", J. Membr. Sci., 437, 286 (2013). https://doi.org/10.1016/j.memsci.2013.03.001
  17. S. H. Lee, M. Z. Kim, C. H. Cho, and M. H. Han, "$CO_2$ permeation behavior of Pebax-2533 plate membranes prepared from 1-propanol/n-buthanol mixed solvents", Membr. J., 23, 367 (2013).
  18. C. D. Park, C. H. Hyung, K. H. Kim, W. K. Choi, Y. S. Park, and H. K. Lee, "Study on the removal of water vapor using PEI/PEBAX composite hollow fiber membrane", Membr. J., 23(2), 119 (2013).
  19. X. Feng and R. Y. M Huang, "Resistance model approach to asymmetric polyetherimide membranes for pervaporation of isopropanol/water mixtures", J. Membr. Sci., 84, 15 (1993). https://doi.org/10.1016/0376-7388(93)85047-Z
  20. T. Masuda, E. Isobe, and T. Higashimura, "Polymerization of 1-(trimethylsilyl)-1-propyne by halides of niobium (V) and tantalum (V) and polymer properties", Macromolecules, 18, 841 (1985). https://doi.org/10.1021/ma00147a003
  21. A. Jomekian, R. M. Behbahani, T. Mohammadi, and A. Kargari, "$CO_2/CH_4$ separation by high performance co-casted ZIF-8/PEBAX1657/PES mixed matrix membrane", J. Nat. Gas Sci. Eng., 31, 562 (2016). https://doi.org/10.1016/j.jngse.2016.03.067
  22. Q. Hu, E. Marand, S. Dhingra, D. Fritsch, J. Wen, and G. Wilkes, "Poly(amide-imide)/$TiO_2$ nano-composite gas separation membranes: Fabrication and characterization", J. Membr. Sci., 135, 65 (1997). https://doi.org/10.1016/S0376-7388(97)00120-8
  23. C. K. Yeom, J. M. Lee, Y. T. Hong, K. Y. Choi, and S. C. Kim, "Analysis of permeation transients of pure gases through dense polymeric membranes measured by a new permeation apparatus", J. Membr. Sci., 166, 71 (2000). https://doi.org/10.1016/S0376-7388(99)00252-5
  24. K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe, and O. M. Yaghi, "Exceptional chemical and thermal stability of zeolitic imidazolate frameworks", PANS, 27, 10186 (2006).
  25. M. C. Choi, J. Y. Jung, H. S. Yeom, and Y. W. Chang, "Mechanical, thermal, barrier, and rheological properties of poly(ether block amide) elastomer/organoclay nanocomposite prepared by melt blending", Polym. Eng. Sci., 53, 982 (2012). https://doi.org/10.1002/pen.23348
  26. J. H. Kim and Y. M. Lee, "Gas permeation properties of poly(amide-6-b-ethylene oxide)-silica hybrid membranes", J. Membr. Sci., 193, 209 (2001). https://doi.org/10.1016/S0376-7388(01)00514-2
  27. M. Imani, S. Sharifi, H. Mirzadeh, and F. Ziaei, "Monitoring of polyethylene glycoldiacrylate-based hydrogel formation by real time NMR spectroscopy", Iran. Polym. J., 16, 13 (2007).
  28. Y. Hu, H. Kazemian, S. Rohani, Y. Huang, and Y. Song, "In situ high pressure study of ZIF-8 by FTIR spectroscopy", Chem. Commun., 47, 12694 (2011). https://doi.org/10.1039/c1cc15525c
  29. Y. Wang, S. M. Alhassan, V. H. Yang, and D. A. Schiraldi, "Polyether-block-amide copolymer/clay films prepared via a freeze-drying method", Composites: Part B, 45, 625 (2013). https://doi.org/10.1016/j.compositesb.2012.05.017
  30. A. Ghadimi, M. Amirilargani, T. Mohammadi, N. Kasiri, and B Sadatnia, "Preparation of alloyed poly(ether block amide)/poly(ethylene glycol diacrylate) membranes for separation of $CO_2/H_2$ (syngas application)", J. Membr. Sci., 458, 14 (2014). https://doi.org/10.1016/j.memsci.2014.01.048
  31. P. D. Sutrisna, J. Hou, H. Li, Y. Zhang, and V. Chen, "Improved operational stability of Pebax-based gas separation membranes with ZIF-8: A comparative study of flat sheet and composite hollow fibre membranes", J. Membr. Sci., 524, 266 (2017). https://doi.org/10.1016/j.memsci.2016.11.048
  32. X. C. Huang, Y. Y. Lin, J. P. Zhang, and X. M. Chen, "Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies", Angew. Chem. Int. Ed., 45, 1557 (2006). https://doi.org/10.1002/anie.200503778
  33. M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O'Keeffe, and O. M. Yaghi, "Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks", Acc. Chem. Res., 34, 319 (2001). https://doi.org/10.1021/ar000034b
  34. S. W. Hwang, Y. C. Chung, B. C. Chun, and S. J. Lee, "Gas permeability of polyethylene films containing zeolite powder", Polymer(Korea), 28(5), 374 (2004).
  35. Y. Dai, J. R. Johnson, O. Karvan, D. S. Sholl, and W. J. Koros, "$Ultem^{(R)}/ZIF-8$ mixed matrix hollow fiber membranes for $CO_2/N_2$ separations", J. Membr. Sci., 401, 76 (2012). https://doi.org/10.1016/j.memsci.2012.01.044
  36. A. F. Bushell, M. P. Attfield, C. R. Mason, P. M. Budd, Y. Yampolskii, L. Starannikova, A. Rebrov, F. Bazzarelli, P. Bernardo, J. C. Jansen, M. Lanc, K. Friess, V. Shantarovich, V. Gustov, and V. Isaeva, "Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8", J. Membr. Sci., 427, 48 (2013). https://doi.org/10.1016/j.memsci.2012.09.035