DOI QR코드

DOI QR Code

SWAT model calibration/validation using SWAT-CUP I: analysis for uncertainties of objective functions

SWAT-CUP을 이용한 SWAT 모형 검·보정 I: 목적함수에 따른 불확실성 분석

  • Yu, Jisoo (Water Resources Research Center, K-water Research Institute) ;
  • Noh, Joonwoo (Water Resources Research Center, K-water Research Institute) ;
  • Cho, Younghyun (Water Resources Research Center, K-water Research Institute)
  • 유지수 (K-water연구원 물순환연구소) ;
  • 노준우 (K-water연구원 물순환연구소) ;
  • 조영현 (K-water연구원 물순환연구소)
  • Received : 2019.11.11
  • Accepted : 2019.12.02
  • Published : 2020.01.31

Abstract

This study aims to quantify the uncertainty that can be induced by the objective function when calibrating SWAT parameters using SWAT-CUP. SWAT model was constructed to estimate runoff in Naesenong-cheon, which is the one of mid-watershed in Nakdong River basin, and then automatic calibration was performed using eight objective functions (R2, bR2, NS, MNS, KGE, PBIAS, RSR, and SSQR). The optimum parameter sets obtained from each objective function showed different ranges, and thus the corresponding hydrologic characteristics of simulated data were also derived differently. This is because each objective function is sensitive to specific hydrologic signatures and evaluates model performance in an unique way. In other words, one objective function might be sensitive to the residual of the extreme value, so that well produce the peak value, whereas ignores the average or low flow residuals. Therefore, the hydrological similarity between the simulated and measured values was evaluated in order to select the optimum objective function. The hydrologic signatures, which include not only the magnitude, but also the ratio of the inclining and declining time in hydrograph, were defined to consider the timing of the flow occurrence, the response of watershed, and the increasing and decreasing trend. The results of evaluation were quantified by scoring method, and hence the optimal objective functions for SWAT parameter calibration were determined as MNS (342.48) and SSQR (346.45) with the highest total scores.

본 연구는 SWAT-CUP을 이용한 SWAT 모형 매개변수 보정을 수행할 때, 목적함수로 인해 발생할 수 있는 불확실성을 정량화하는 것을 목표로 수행되었다. 먼저 낙동강 권역의 내성천 유역을 대상으로 유출량 산정을 위한 SWAT 모형을 구축한 후, SWAT-CUP을 이용하여 8개 목적함수(R2, bR2, NS, MNS, KGE, PBIAS, RSR 및 SSQR)를 기준으로 자동 보정을 수행하였다. 최종 매개변수는 목적함수에 따라 서로 다른 범위를 나타내었으며, 모의 결과의 수문특성 또한 상이하게 도출되는 것을 확인하였다. 이것은 각각의 목적함수가 특정 수문특성에 대하여 민감하게 반응하여 서로 다른 모의 성능을 평가하기 때문이다. 즉, 특정 목적함수는 극치값의 잔차에 대해 민감하게 반응하여 첨두값을 잘 모의하는 반면, 저유량 또는 평균유량에 대한 모의 성능이 떨어질 수 있다. 따라서 본 연구에서는 최적 목적함수를 선정하기 위해 8개의 목적함수에 따라 산정된 모의값과 관측값 사이의 수문학적 유사성을 평가하였다. 단순히 유량의 크기 비교 뿐 아니라 유량의 발생 시기, 유역의 반응 및 증가·감소 경향성을 함께 고려하기 위해 수문곡선의 증수부 및 감수부 유지시간 비율을 수문특성으로 정의하여 SWAT 모형을 평가하였으며, 평가 결과를 점수로 정량화하여 나타냈다. 그 결과 최종적으로 SWAT 매개변수 보정을 위한 최적 목적함수는 총점이 높은 MNS (342.48) 및 SSQR (346.45)로 선정되었다.

Keywords

References

  1. Abbaspour, K.C., Vaghefi, S.A., and Srinivasan, R. (2018). "A guideline for successful calibration and uncertainty analysis for soil and water assessment: a review of papers from the 2016 international SWAT conference." Water, MDPI, Vol. 10, W10010006.
  2. Abbaspour, K.C., Yang, J., Maximove, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., and Srinivasan, R. (2007). "Modeling hydrology and water quality in the pre-alpine/apline Thur watershed using SWAT." Journal of Hydrology, Elsevier, Vol. 333, pp. 413-430. https://doi.org/10.1016/j.jhydrol.2006.09.014
  3. Ahl, R.S., Woods, S.W., and Zuuring, H.R. (2008). "Hydrologic calibration and validation of SWAT in a snow-dominated Rocky mountain watershed, Montana, U.S.A." Journal of the American Water Resources Association, Wiley, Vol. 44, No. 6, pp. 1411-1430. https://doi.org/10.1111/j.1752-1688.2008.00233.x
  4. Arnold, J.G., Allen, P.M., and Bernhardt, G. (1993). "A comprehensive surface-groundwater flow model." Journal of Hydrology, Elsevier, Vol. 142, pp. 47-69. https://doi.org/10.1016/0022-1694(93)90004-S
  5. Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., Srinivasan, R., Santhi, C., Harmel, R.D., Van Griensven, A., Van Liew, M.W., Kannan, N., and Jha, M.K. (2012). "SWAT: model use, calibration, and validation." American Society of Agricultural and Biological Engineers, ASABE, Vol. 55, No. 4, pp. 1491-1508.
  6. Arnold, J.G., Srinivasan, R., Muttiah, R.S., and Williams, J.R. (1998). "Large-area hydrologic modeling and assessment: Part I. Model development." Journal of the American Water Resources Association, Wiley, Vol. 35, No. 1, pp. 73-89. https://doi.org/10.1111/j.1752-1688.1999.tb05453.x
  7. Blazkova, S., and Beven, K. (2009). "A limits of acceptability approach to model evaluation and uncertainty estimation in flood frequency estimation by continuous simulation: Skalka catchment, Czech Republic." Water Resources Research, AGU, Vol. 45, W00B16.
  8. Booij, M.J., and Krol, M.S. (2010). "Balance between calibration objectives in a conceptual hydrological model." Hydrological Sciences Journal, Taylor & Francis, Vol. 55, No. 6, pp. 1017-1032. https://doi.org/10.1080/02626667.2010.505892
  9. Choi, H.S. (2013). "Parameter estimation of SWAT model using SWAT-CUP in Seom-river experimental watershed." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 33, No. 2, pp. 529-536. https://doi.org/10.12652/Ksce.2013.33.2.529
  10. Dechmi, F., Burgute, J., and Skhiri, A. (2012). "SWAT application in intensity irrigation system: model modification, calibration and validation." Journal of Hydrology, Elsevier, Vol. 470-471, pp. 227-238. https://doi.org/10.1016/j.jhydrol.2012.08.055
  11. Feyereisen, G.W., Strickland, T.C., Bosch, D.D., and Sullivan, D.G. (2007). "Evaluation of SWAT manual calibration and input parameter sensitivity in the Little River watershed." American Society of Agricultural and Biological Engineers, ASABE, Vol. 50, No. 3, pp. 843-855.
  12. Gupta, H.V., Kling, H., Yilmaz, K.K., and Martinez, G.F. (2009). "Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modeling." Journal of Hydrology, Elsevier, Vol. 377, pp. 80-91. https://doi.org/10.1016/j.jhydrol.2009.08.003
  13. Gupta, H.V., Sorooshian, S., and Yapo, P.O. (1998). "Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information." Water Resources Research, AGU, Vol. 34, No. 4, pp. 751-763, https://doi.org/10.1029/97WR03495
  14. Gupta, H.V., Sorooshian, S., and Yapo, P.O. (1999). "Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration." Journal of Hydrologic Engineering, ASCE, Vol. 1999.4, pp. 135-143.
  15. Houshmand, K.D., Esmaili, K., Faridhosseini, A, Sanaeinejad, S.H., Khalili, D., and Abbaspour, K.C. (2017). "Sensitivity of calibrated parameters and water resources estimates on different objective functions and optimization algorithms." Water, MDPI, Vol. 9, No. 6, pp. 384. https://doi.org/10.3390/w9060384
  16. Joh, H.K., Park, J.Y., Jang, C.H., and Kim, S.J. (2012). "Comparing prediction uncertainty analysis techniques of SWAT simulated streamflow applied to Chungju Dam watershed." Journal of Korea Water Resources Association, KWRA, Vol. 45, No. 9, pp. 861-874. https://doi.org/10.3741/JKWRA.2012.45.9.861
  17. Kumar, S., and Merwade, V. (2009). "Impact of watershed subdivision and soil data resolution on SWAT model calibration and parameter uncertainty." Journal of American Water Resources Association, Wiley, Vol. 45, No. 5, pp. 1179-1196. https://doi.org/10.1111/j.1752-1688.2009.00353.x
  18. Lee, E., and Seo, D. (2011). "Flow calibration and validation of Daechung Lake watershed, Korea using SWAT-CUP." Journal of Korea Water Resources Association, KWRA, Vol. 44, No. 9, pp. 711-720. https://doi.org/10.3741/JKWRA.2011.44.9.711
  19. Lee, J., Kim, J., Jang, W.-S., Lim, K.-J., and Engel, B.A. (2018). "Assessment of baseflow estimates considering recession characteristics in SWAT." Water, MDPI, Vol. 10, No. 371, W10040371.
  20. Lee, W.-H., Lee, J.-H., Park, J.-H., and Choi, H.-S. (2016). "The relationship between parameters of the SWAT model and the geomorphological characteristics of a watershed." Ecology and Resilient Infrastructure, KSEIE, Vol. 3, No. 1, pp. 35-45. https://doi.org/10.17820/eri.2016.3.1.035
  21. Li, T., and Kim, G. (2019). "Impacts of climate change scenarios on non-point source pollution in the Saemangeum watershed, South Korea." Water, MDPI, Vol. 11, No. 10, pp. 1982. https://doi.org/10.3390/w11101982
  22. Madsen, H. (2000). "Automatic calibration of a conceptual rainfall-runoff model using multiple objectives." Journal of Hydrology, Elsevier, Vol. 235, pp. 276-288. https://doi.org/10.1016/S0022-1694(00)00279-1
  23. Malago, A., Pagliero, L., Bouraoui, F., and Franchini, M. (2015). "Comparing calibrated parameter sets of the SWAT model for the Scandinavian and Iberian peninsulas." Hydrological Sciences Journal, Taylor & Francis, Vol. 60, No. 5, pp. 949-967.
  24. Me, W., Abell, J.M., and Hamilton, D.P. (2015). "Effects of hydrologic conditions on SWAT model performance and parameter sensitivity for a small, mixed land use catchment in New Zealand." Hydrology and Earth System Sciences, EGU, Vol, 19, pp. 4127-4147. https://doi.org/10.5194/hess-19-4127-2015
  25. Muleta, M.K. (2012). "Model performance sensitivity to objective function during automated calibrations." Journal of Hydrologic Engineering, ASCE, Vol. 17, No. 6, pp. 756-767. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000497
  26. Ryu, J., Kang, H., Choi, J.W., Kong, D.S., Gum, D., Jang, C.H., and Lim, K.J. (2012). "Application of SWAT-CUP for streamflow auto-calibration at Soyang-gang dam watershed." Journal of Korean Society on Water Environment, KSWE, Vol. 28, No. 3, pp. 347-358.
  27. Shafii, M., and Tolson, B.A. (2015). "Optimizing hydrological consistency by incorporating hydrological signatures into model calibration objectives." Water Resources Research, AGU, Vol. 51, pp. 3796-3814, WR016520. https://doi.org/10.1002/2014WR016520
  28. Sorooshian, S., Gupta, V.K., and Fulton, J.L. (1983). "Evaluation of maximum likelihood parameter estimation techniques for conceptual rainfall-runoff models: Influence of calibration data variability and length on model credibility." Water Resources Research, AGU, Vol. 19, No. 1, pp. 251-259. https://doi.org/10.1029/WR019i001p00251
  29. Teshager, A.D., Gassman, P.W., Secchi, S., Schoof, J.T., and Misgna, G. (2016). "Modeling agricultural watersheds with the soil and water assessment tool (SWAT): calibration and validation with a novel procedure for spatially explicit HRUs." Environmental Management, Springer, Vol. 57, pp. 894-911.
  30. Van Liew, M.W., Veith, T.L., Bosch, D.D., and Anorld, J.G. (2007). "Suitability of SWAT for the conservation effects assessment project: comparison on USDA agricultural research service watersheds." Journal of Hydrologic Engineering, ASCE, Vol. 12, No. 2, pp. 173-189. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:2(173)
  31. Yang, J., Reichert, P., Abbaspour, K.C., Xia, J., and Yang, H. (2008). "Comparing uncertainty analysis techniques for a SWAT application to the Chaohe basin in China." Journal of Hydrology, Elsevier, Vol. 358, pp. 1-23. https://doi.org/10.1016/j.jhydrol.2008.05.012