DOI QR코드

DOI QR Code

Ginsenoside Rg3 protects against iE-DAP-induced endothelial-to-mesenchymal transition by regulating the miR-139-5p-NF-κB axis

  • Lee, Aram (Department of Life Systems, Sookmyung Women's University) ;
  • Yun, Eunsik (Department of Life Systems, Sookmyung Women's University) ;
  • Chang, Woochul (Department of Biology Education, College of Education, Pusan National University) ;
  • Kim, Jongmin (Department of Life Systems, Sookmyung Women's University)
  • Received : 2018.10.10
  • Accepted : 2019.01.14
  • Published : 2020.03.15

Abstract

Background: Emerging evidence suggests that endothelial-to-mesenchymal transition (EndMT) in endothelial dysfunction due to persistent inflammation is a key component and emerging concept in the pathogenesis of vascular diseases. Ginsenoside Rg3 (Rg3), an active compound from red ginseng, has been known to be important for vascular homeostasis. However, the effect of Rg3 on inflammation-induced EndMT has never been reported. Here, we hypothesize that Rg3 might reverse the inflammation-induced EndMT and serve as a novel therapeutic strategy for vascular diseases. Methods: EndMT was examined under an inflammatory condition mediated by the NOD1 agonist, γ-d-glutamyl-meso-diaminopimelic acid (iE-DAP), treatment in human umbilical vein endothelial cells. The expression of EndMT markers was determined by Western blot analysis, real-time polymerase chain reaction, and immunocytochemistry. The underlying mechanisms of Rg3-mediated EndMT regulation were investigated by modulating the microRNA expression. Results: The NOD1 agonist, iE-DAP, led to a fibroblast-like morphology change with a decrease in the expression of endothelial markers and an increase in the expression of the mesenchymal marker, namely EndMT. On the other hand, Rg3 markedly attenuated the iE-DAP-induced EndMT and preserved the endothelial phenotype. Mechanically, miR-139 was downregulated in cells with iE-DAP-induced EndMT and partly reversed in response to Rg3 via the regulation of NF-κB signaling, suggesting that the Rg3-miR-139-5p-NF-κB axis is a key mediator in iE-DAP-induced EndMT. Conclusion: These results suggest, for the first time, that Rg3 can be used to inhibit inflammation-induced EndMT and may be a novel therapeutic option against EndMT-associated vascular diseases.

Keywords

References

  1. Cho JG, Lee A, Chang W, Lee MS, Kim J. Endothelial to mesenchymal transition represents a key link in the interaction between inflammation and endothelial dysfunction. Front Immunol 2018;9.
  2. Lee A, Papangeli I, Park Y, Jeong HN, Choi J, Kang H, Jo HN, Kim J, Chun HJ. A PPARgamma-dependent miR-424/503-CD40 axis regulates inflammation mediated angiogenesis. Sci Rep 2017;7(1):2528. https://doi.org/10.1038/s41598-017-02852-4
  3. Kim J. MicroRNAs as critical regulators of the endothelial to mesenchymal transition in vascular biology. Bmb Rep 2018;51(2):65-72. https://doi.org/10.5483/BMBRep.2018.51.2.011
  4. Vanhoutte PM, Shimokawa H, Feletou M, Tang EH. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol (Oxf). 2017;219(1):22-96. https://doi.org/10.1111/apha.12646
  5. Sena CM, Pereira AM, Seica R. Endothelial dysfunction - a major mediator of diabetic vascular disease. Biochim Biophys Acta 2013;1832(12):2216-31. https://doi.org/10.1016/j.bbadis.2013.08.006
  6. Ghosh AK, Quaggin SE, Vaughan DE. Molecular basis of organ fibrosis: potential therapeutic approaches. Exp Biol Med (Maywood). 2013;238(5):461-81. https://doi.org/10.1177/1535370213489441
  7. Zeisberg EM, Potenta S, Xie L, Zeisberg M, Kalluri R. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Research 2007;67(21):10123-8. https://doi.org/10.1158/0008-5472.CAN-07-3127
  8. Good RB, Gilbane AJ, Trinder SL, Denton CP, Coghlan G, Abraham DJ, Holmes AM. Endothelial to mesenchymal transition contributes to endothelial dysfunction in pulmonary arterial hypertension. Am J Pathol 2015;185(7):1850-8. https://doi.org/10.1016/j.ajpath.2015.03.019
  9. Potenta S, Zeisberg E, Kalluri R. The role of endothelial-to-mesenchymal transition in cancer progression. Brit J Cancer 2008;99(9):1375-9. https://doi.org/10.1038/sj.bjc.6604662
  10. Sanchez-Duffhues G, Orlova V, Ten Dijke P. In brief: endothelial-tomesenchymal transition. J Pathol 2016;238(3):378-80. https://doi.org/10.1002/path.4653
  11. Chen PY, Simons M. When endothelial cells go rogue. Embo Mol Med 2016;8(1):1-2. https://doi.org/10.15252/emmm.201505943
  12. Perez L, Munoz-Durango N, Riedel CA, Echeverria C, Kalergis AM, Cabello-Verrugio C, Simon F. Endothelial-to-mesenchymal transition: cytokinemediated pathways that determine endothelial fibrosis under inflammatory conditions. Cytokine Growth F R 2017;33:41-54. https://doi.org/10.1016/j.cytogfr.2016.09.002
  13. Yamaguchi N, Suzuki Y, Mahbub MH, Takahashi H, Hase R, Ishimaru Y, Sunagawa H, Watanabe R, Eishi Y, Tanabe T. The different roles of innate immune receptors in inflammation and carcinogenesis between races. Environ Health Prev Med 2017;22(1):70. https://doi.org/10.1186/s12199-017-0678-8
  14. Yan R, Liu Z. LRRK2 enhances Nod1/2-mediated inflammatory cytokine production by promoting Rip2 phosphorylation. Protein Cell 2017;8(1):55-66. https://doi.org/10.1007/s13238-016-0326-x
  15. Fernandez-Velasco M, Prieto P, Terron V, Benito G, Flores JM, Delgado C, Zaragoza C, Lavin B, Gomez-Parrizas M, Lopez-Collazo E, et al. NOD1 activation induces cardiac dysfunction and modulates cardiac fibrosis and cardiomyocyte apoptosis. PLoS One 2012;7(9). e45260. https://doi.org/10.1371/journal.pone.0045260
  16. Caruso R, Warner N, Inohara N, Nunez G. NOD1 and NOD2: signaling, host defense, and inflammatory disease. Immunity 2014;41(6):898-908. https://doi.org/10.1016/j.immuni.2014.12.010
  17. Tao Z, Zhu C, Song W, Xu W, Zhang S, Liu H, Li H. Inductive expression of the NOD1 signalling pathway in chickens infected with Salmonella pullorum. Brit Poultry Sci 2017;58(3):242-50. https://doi.org/10.1080/00071668.2017.1280771
  18. Kang H, Park Y, Lee A, Seo H, Kim MJ, Choi J, Jo HN, Jeong HN, Cho JG, Chang W, et al. Negative regulation of NOD1 mediated angiogenesis by PPAR gammaregulated miR-125a. Biochem Bioph Res Co 2017;482(1):28-34. https://doi.org/10.1016/j.bbrc.2016.11.032
  19. Gasperini P, Espigol-Frigole G, McCormick PJ, Salvucci O, Maric D, Uldrick TS, Polizzotto MN, Yarchoan R, Tosato G. Kaposi sarcoma herpesvirus promotes endothelial-to-mesenchymal transition through Notch-dependent signaling. Cancer Res 2012;72(5):1157-69. https://doi.org/10.1158/0008-5472.CAN-11-3067
  20. Cheng F, Pekkonen P, Laurinavicius S, Sugiyama N, Henderson S, Gunther T, Rantanen V, Kaivanto E, Aavikko M, Sarek G, et al. KSHV-initiated notch activation leads to membrane-type-1 matrix metalloproteinase-dependent lymphatic endothelial-to-mesenchymal transition. Cell Host Microbe 2011;10(6):577-90. https://doi.org/10.1016/j.chom.2011.10.011
  21. Echeverria C, Montorfano I, Tapia P, Riedel C, Cabello-Verrugio C, Simon F. Endotoxin-induced endothelial fibrosis is dependent on expression of transforming growth factors beta 1 and beta 2. Infect Immun 2014;82(9):3678-86. https://doi.org/10.1128/IAI.02158-14
  22. Echeverria C, Montorfano I, Sarmiento D, Becerra A, Nunez-Villena F, Figueroa XF, Cabello-Verrugio C, Elorza AA, Riedel C, Simon F. Lipopolysaccharide induces a fibrotic-like phenotype in endothelial cells. J Cell Mol Med 2013;17(6):800-14. https://doi.org/10.1111/jcmm.12066
  23. Echeverria C, Montorfano I, Hermosilla T, Armisen R, Velasquez LA, Cabello-Verrugio C, Varela D, Simon F. Endotoxin induces fibrosis in vascular endothelial cells through a mechanism dependent on transient receptor protein melastatin 7 activity. PLoS One 2014;9(4). e94146. https://doi.org/10.1371/journal.pone.0094146
  24. Mohanan P, Subramaniyam S, Mathiyalagan R, Yang DC. Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. J Ginseng Res 2018;42(2):123-32. https://doi.org/10.1016/j.jgr.2017.01.008
  25. Li Y, Lu JY, Bai FR, Xiao YA, Guo YR, Dong ZM. Ginsenoside Rg3 suppresses proliferation and induces apoptosis in human osteosarcoma. Biomed Res Int 2018;2018.
  26. Mochizuki M, Yoo YC, Matsuzawa K, Sato K, Saiki I, Tonooka S, Samukawa K, Azuma I. Inhibitory effect of tumor-metastasis in mice by saponins, ginsenoside-Rb2, 20(R)-Ginsenoside-Rg3 and 20(S)-Ginsenoside-Rg3, of redginseng. Biol Pharm Bull 1995;18(9):1197-202. https://doi.org/10.1248/bpb.18.1197
  27. Wang X, Chen L, Wang T, Jiang X, Zhang H, Li P, Lv B, Gao X. Ginsenoside Rg3 antagonizes adriamycin-induced cardiotoxicity by improving endothelial dysfunction from oxidative stress via upregulating the Nrf2-ARE pathway through the activation of akt. Phytomedicine 2015;22(10):875-84. https://doi.org/10.1016/j.phymed.2015.06.010
  28. Pan XY, Guo H, Han J, Hao F, An Y, Xu Y, Xiaokaiti Y, Pan Y, Li XJ. Ginsenoside Rg3 attenuates cell migration via inhibition of aquaporin 1 expression in PC-3M prostate cancer cells. Eur J Pharmacol 2012;683(1-3):27-34. https://doi.org/10.1016/j.ejphar.2012.02.040
  29. Kim JW, Jung SY, Kwon YH, Lee JH, Lee YM, Lee BY, Kwon SM. Ginsenoside Rg3 attenuates tumor angiogenesis via inhibiting bioactivities of endothelial progenitor cells. Cancer Biol Ther 2012;13(7):504-15. https://doi.org/10.4161/cbt.19599
  30. Keung MH, Chan LS, Kwok HH, Wong RNS, Yue PYK. Role of microRNA-520h in 20(R)-ginsenoside-Rg3-mediated angiosuppression. J Ginseng Res 2016;40(2):151-9. https://doi.org/10.1016/j.jgr.2015.07.002
  31. Lee B, Sur B, Park J, Kim SH, Kwon S, Yeom M, Shim I, Lee H, Hahm DH. Ginsenoside Rg3 alleviates lipopolysaccharide-induced learning and memory impairments by anti-inflammatory activity in rats. Biomol Ther 2013;21(5):381-90. https://doi.org/10.4062/biomolther.2013.053
  32. Zhang LP, Jiang YC, Yu XF, Xu HL, Li M, Zhao XZ, Sui DY. Ginsenoside Rg3 improves cardiac function after myocardial ischemia/reperfusion via attenuating apoptosis and inflammation. Evid-Based Compl Alt 2016;2016.
  33. Shin YM, Jung HJ, Choi WY, Lim CJ. Antioxidative, anti-inflammatory, and matrix metalloproteinase inhibitory activities of 20(S)-ginsenoside Rg3 in cultured mammalian cell lines. Mol Biol Rep 2013;40(1):269-79. https://doi.org/10.1007/s11033-012-2058-1
  34. Lee IS, Uh I, Kim KS, Kim KH, Park J, Kim Y, Jung JH, Jung HJ, Jang HJ. Antiinflammatory effects of ginsenoside Rg3 via NF-kappa B pathway in A549 cells and human asthmatic lung tissue. J Immunol Res 2016;2016.
  35. Xing W, Yang L, Peng Y, Wang QL, Gao M, Yang MS, Xiao XZ. Ginsenoside Rg3 attenuates sepsis-induced injury and mitochondrial dysfunction in liver via AMPK-mediated autophagy flux. Bioscience Rep 2017;37.
  36. Zhou YD, Hou JG, Liu W, Ren S, Wang YP, Zhang R, Chen C, Wang Z, Li W. 20(R)-ginsenoside Rg3, a rare saponin from red ginseng, ameliorates acetaminophen-induced hepatotoxicity by suppressing PI3K/AKT pathwaymediated inflammation and apoptosis. Int Immunopharmacol 2018;59:21-30. https://doi.org/10.1016/j.intimp.2018.03.030
  37. Kim ND, Kang SY, Park JH, Schini-Kerth VB. Ginsenoside Rg3 mediates endothelium-dependent relaxation in response to ginsenosides in rat aorta: role of K+ channels. Eur J Pharmacol 1999;367(1):41-9. https://doi.org/10.1016/S0014-2999(98)00898-X
  38. Kim ND, Kim EM, Kang KW, Cho MK, Choi SY, Kim SG. Ginsenoside Rg3 inhibits phenylephrine-induced vascular contraction through induction of nitric oxide synthase. Br J Pharmacol 2003;140(4):661-70. https://doi.org/10.1038/sj.bjp.0705490
  39. Nagar H, Choi S, Jung SB, Jeon BH, Kim CS. Rg3-enriched Korean Red Ginseng enhances blood pressure stability in spontaneously hypertensive rats. Integr Med Res 2016;5(3):223-9. https://doi.org/10.1016/j.imr.2016.05.006
  40. Choi SH, Hong ZY, Nam JK, Lee HJ, Jang J, Yoo RJ, Lee YJ, Lee CY, Kim KH, Park S, et al. A hypoxia-induced vascular endothelial-to-mesenchymal transition in development of radiation-induced pulmonary fibrosis. Clin Cancer Res 2015;21(16):3716-26. https://doi.org/10.1158/1078-0432.CCR-14-3193
  41. Mina SG, Wang W, Cao QF, Huang P, Murray BT, Mahler GJ. Shear stress magnitude and transforming growth factor-beta eta 1 regulate endothelial to mesenchymal transformation in a three-dimensional culture microfluidic device. Rsc Adv 2016;6(88):85457-67. https://doi.org/10.1039/C6RA16607E
  42. Liu DH, Chen YM, Liu Y, Hao BS, Zhou B, Wu L, Wang M, Chen L, Wu WK, Qian XX. Rb1 protects endothelial cells from hydrogen peroxide-induced cell senescence by modulating redox status. Biol Pharm Bull 2011;34(7):1072-7. https://doi.org/10.1248/bpb.34.1072
  43. Kim MK, Lee SK, Park JH, Lee JH, Yun BH, Park JH, Seo SK, Cho S, Choi YS. Ginsenoside Rg3 decreases fibrotic and invasive nature of endometriosis by modulating miRNA-27b: in vitro and in vivo studies. Sci Rep 2017;7(1):17670. https://doi.org/10.1038/s41598-017-17956-0
  44. Li J, Lu J, Ye Z, Han X, Zheng X, Hou H, Chen W, Li X, Zhao L. 20(S)-Rg3 blocked epithelial-mesenchymal transition through DNMT3A/miR-145/FSCN1 in ovarian cancer. Oncotarget 2017;8(32):53375-86. https://doi.org/10.18632/oncotarget.18482
  45. Wu B, Wang M, Ma Y, Yuan L, Lu S. High-throughput sequencing and characterization of the small RNA transcriptome reveal features of novel and conserved microRNAs in Panax ginseng. PLoS One 2012;7(9), e44385. https://doi.org/10.1371/journal.pone.0044385
  46. Mathiyalagan R, Subramaniyam S, Natarajan S, Kim YJ, Sun MS, Kim SY, Kim YJ, Yang DC. Insilico profiling of microRNAs in Korean ginseng (Panax ginseng Meyer). J Ginseng Res 2013;37(2):227-47. https://doi.org/10.5142/jgr.2013.37.227
  47. Papangeli I, Kim J, Maier I, Park S, Lee A, Kang YJ, Tanaka K, Khan OF, Ju H, Kojima Y, et al. MicroRNA 139-5p coordinates APLNR-CXCR4 crosstalk during vascular maturation. Nat Commun 2016;7.
  48. Li QG, Liang X, Wang YW, Meng XK, Xu Y, Cai SJ, Wang ZM, Liu JW, Cai GX. miR-139-5p inhibits the epithelial-mesenchymal transition and enhances the chemotherapeutic sensitivity of colorectal cancer cells by downregulating BCL2. Sci Rep-Uk 2016;6.
  49. Jiang C, Tong Z, Fang WL, Fu QB, Gu YJ, Lv TT, Liu DM, Xue W, Lv JW. Microrna-139-5p inhibits epithelial-mesenchymal transition and fibrosis in postmenopausal women with interstitial cystitis by targeting LPAR4 via the PI3K/Akt signaling pathway. J Cell Biochem 2018;119(8):6429-41. https://doi.org/10.1002/jcb.26610
  50. Kim BM, Kim DH, Park JH, Surh YJ, Na HK. Ginsenoside Rg3 inhibits constitutive activation of NF-kappaB signaling in human breast cancer (MDA-MB-231) cells: ERK and akt as potential upstream targets. J Cancer Prev 2014;19(1):23-30. https://doi.org/10.15430/jcp.2014.19.1.23
  51. Kim SM, Lee SY, Yuk DY, Moon DC, Choi SS, Kim Y, Han SB, Oh KW, Hong JT. Inhibition of NF-kappaB by ginsenoside Rg3 enhances the susceptibility of colon cancer cells to docetaxel. Arch Pharm Res 2009;32(5):755-65. https://doi.org/10.1007/s12272-009-1515-4
  52. Maleszewska M, Moonen JR, Huijkman N, van de Sluis B, Krenning G, Harmsen MC. IL-1beta and TGFbeta2 synergistically induce endothelial to mesenchymal transition in an NFkappaB-dependent manner. Immunobiology 2013;218(4):443-54. https://doi.org/10.1016/j.imbio.2012.05.026
  53. Arciniegas E, Carrillo LM, De Sanctis JB, Candelle D. Possible role of NFkappaB in the embryonic vascular remodeling and the endothelial mesenchymal transition process. Cell Adh Migr 2008;2(1):17-29. https://doi.org/10.4161/cam.2.1.5789
  54. Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 2009;27:693-733. https://doi.org/10.1146/annurev.immunol.021908.132641
  55. Gatheral T, Reed DM, Moreno L, Gough PJ, Votta BJ, Sehon CA, Rickard DJ, Bertin J, Lim E, Nicholson AG, et al. A key role for the endothelium in NOD1 mediated vascular inflammation: comparison to TLR4 responses. PLoS One 2012;7(8), e42386. https://doi.org/10.1371/journal.pone.0042386
  56. Wang Z, Ding Q, Li Y, Liu Q, Wu W, Wu L, Yu H. Reanalysis of microRNA expression profiles identifies novel biomarkers for hepatocellular carcinoma prognosis. Tumour Biol 2016;37(11):14779-87. https://doi.org/10.1007/s13277-016-5369-3
  57. Maoa R, Zou F, Yang L, Lin S, Li Y, Ma M, Yin P, Liang X, Liu J. The loss of MiR-139-5p promotes colitis-associated tumorigenesis by mediating PI3K/AKT/Wnt signaling. Int J Biochem Cell Biol 2015;69:153-61. https://doi.org/10.1016/j.biocel.2015.10.008
  58. Zhang C. The role of inflammatory cytokines in endothelial dysfunction. Basic Res Cardiol 2008;103(5):398-406. https://doi.org/10.1007/s00395-008-0733-0
  59. Huang X, Pan L, Pu H, Wang Y, Zhang X, Li C, Yang Z. Loss of caveolin-1 promotes endothelial-mesenchymal transition during sepsis: a membrane proteomic study. Int J Mol Med 2013;32(3):585-92. https://doi.org/10.3892/ijmm.2013.1432
  60. Moreira LO, Zamboni DS. NOD1 and NOD2 signaling in infection and inflammation. Front Immunol 2012;3:328. https://doi.org/10.3389/fimmu.2012.00328
  61. Shang J, Zhang Y, Jiang Y, Li Z, Duan Y, Wang L, Xiao J, Zhao Z. NOD2 promotes endothelial-to-mesenchymal transition of glomerular endothelial cells via MEK/ERK signaling pathway in diabetic nephropathy. Biochem Biophys Res Commun 2017;484(2):435-41. https://doi.org/10.1016/j.bbrc.2017.01.155
  62. Chen Y, Yuan T, Zhang H, Yan Y, Wang D, Fang L, Lu Y, Du G. Activation of Nrf2 attenuates pulmonary vascular remodeling via inhibiting endothelial-tomesenchymal transition: an insight from a plant polyphenol. Int J Biol Sci 2017;13(8):1067-81. https://doi.org/10.7150/ijbs.20316
  63. Kanasaki K, Shi S, Kanasaki M, He J, Nagai T, Nakamura Y, Ishigaki Y, Kitada M, Srivastava SP, Koya D. Linagliptin-mediated DPP-4 inhibition ameliorates kidney fibrosis in streptozotocin-induced diabetic mice by inhibiting endothelial-to-mesenchymal transition in a therapeutic regimen. Diabetes 2014;63(6):2120-31. https://doi.org/10.2337/db13-1029
  64. Lee DC, Lau AS. Effects of Panax ginseng on tumor necrosis factoralpha-mediated inflammation: a mini-review. Molecules 2011;16(4):2802-16. https://doi.org/10.3390/molecules16042802
  65. Yuan Q, Jiang YW, Ma TT, Fang QH, Pan L. Attenuating effect of Ginsenoside Rb1 on LPS-induced lung injury in rats. J Inflamm (Lond). 2014;11(1):40. https://doi.org/10.1186/s12950-014-0040-5
  66. Zhang Y, Sun K, Liu YY, Zhang YP, Hu BH, Chang X, Yan L, Pan CS, Li Q, Fan JY, et al. Ginsenoside Rb1 ameliorates lipopolysaccharide-induced albumin leakage from rat mesenteric venules by intervening in both trans- and paracellular pathway. Am J Physiol Gastrointest Liver Physiol 2014;306(4):G289-300.
  67. Zhou W, Chai H, Lin PH, Lumsden AB, Yao Q, Chen C. Ginsenoside Rb1 blocks homocysteine-induced endothelial dysfunction in porcine coronary arteries. J Vasc Surg 2005;41(5):861-8. https://doi.org/10.1016/j.jvs.2005.01.054
  68. Hien TT, Kim ND, Kim HS, Kang KW. Ginsenoside Rg3 inhibits tumor necrosis factor-alpha-induced expression of cell adhesion molecules in human endothelial cells. Pharmazie 2010;65(9):699-701.
  69. Kang KS, Kim HY, Yamabe N, Park JH, Yokozawa T. Preventive effect of 20(S)-ginsenoside Rg3 against lipopolysaccharide-induced hepatic and renal injury in rats. Free Radic Res 2007;41(10):1181-8. https://doi.org/10.1080/10715760701581740
  70. Jiang Y, Li M, Lu Z, Wang Y, Yu X, Sui D, Fu L. Ginsenoside Rg3 induces ginsenoside Rb1-comparable cardioprotective effects independent of reducing blood pressure in spontaneously hypertensive rats. Exp Ther Med 2017;14(5):4977-85.
  71. Qiu G, Lin Y, Zhang H, Wu D. miR-139-5p inhibits epithelial-mesenchymal transition, migration and invasion of hepatocellular carcinoma cells by targeting ZEB1 and ZEB2. Biochem Biophys Res Commun 2015;463(3):315-21. https://doi.org/10.1016/j.bbrc.2015.05.062
  72. Shao Q, Zhang P, Ma Y, Lu Z, Meng J, Li H, Wang X, Chen D, Zhang M, Han Y, et al. MicroRNA-139-5p affects cisplatin sensitivity in human nasopharyngeal carcinoma cells by regulating the epithelial-to-mesenchymal transition. Gene 2018;652:48-58. https://doi.org/10.1016/j.gene.2018.02.003
  73. Zou F, Mao R, Yang L, Lin S, Lei K, Zheng Y, Ding Y, Zhang P, Cai G, Liang X, et al. Targeted deletion of miR-139-5p activates MAPK, NF-kappaB and STAT3 signaling and promotes intestinal inflammation and colorectal cancer. FEBS J 2016;283(8):1438-52. https://doi.org/10.1111/febs.13678

Cited by

  1. Endothelial to Mesenchymal Transition in Pulmonary Vascular Diseases vol.8, pp.12, 2020, https://doi.org/10.3390/biomedicines8120639
  2. Ginsenoside Rg3 Prevents Oncogenic Long Noncoding RNA ATXN8OS from Inhibiting Tumor-Suppressive microRNA-424-5p in Breast Cancer Cells vol.11, pp.1, 2020, https://doi.org/10.3390/biom11010118
  3. Ginsenoside from ginseng: a promising treatment for inflammatory bowel disease vol.73, pp.3, 2020, https://doi.org/10.1007/s43440-020-00213-z
  4. Ginsenosides in vascular remodeling: Cellular and molecular mechanisms of their therapeutic action vol.169, 2021, https://doi.org/10.1016/j.phrs.2021.105647
  5. Caragana rosea Turcz Methanol Extract Inhibits Lipopolysaccharide-Induced Inflammatory Responses by Suppressing the TLR4/NF-κB/IRF3 Signaling Pathways vol.26, pp.21, 2020, https://doi.org/10.3390/molecules26216660