DOI QR코드

DOI QR Code

Stereoisomer-specific ginsenoside 20(S)-Rg3 reverses replicative senescence of human diploid fibroblasts via Akt-mTOR-Sirtuin signaling

  • Yang, Kyeong-Eun (Biological Disaster Analysis Group, Korea Basic Science Institute) ;
  • Jang, Hyun-Jin (Biological Disaster Analysis Group, Korea Basic Science Institute) ;
  • Hwang, In-Hu (Neuroscience Research institute, Korea University College of Medicine) ;
  • Hong, Eun Mi (Biological Disaster Analysis Group, Korea Basic Science Institute) ;
  • Lee, Min-Goo (Department of Physiology, Korea University College of Medicine) ;
  • Lee, Soon (Division of Bio-Analytical Science, University of Science and Technology) ;
  • Jang, Ik-Soon (Biological Disaster Analysis Group, Korea Basic Science Institute) ;
  • Choi, Jong-Soon (Biological Disaster Analysis Group, Korea Basic Science Institute)
  • Received : 2019.02.13
  • Accepted : 2019.08.07
  • Published : 2020.03.15

Abstract

Background: The replicative senescence of human dermal fibroblasts (HDFs) is accompanied by growth arrest. In our previous study, the treatment of senescent HDFs with Rg3(S) lowered the intrinsic reactive oxygen species (ROS) levels and reversed cellular senescence by inducing peroxiredoxin-3, an antioxidant enzyme. However, the signaling pathways involved in Rg3(S)-induced senescence reversal in HDFs and the relatedness of the stereoisomer Rg3(R) in corresponding signaling pathways are not known yet. Methods: We performed senescence-associated β-galactosidase and cell cycle assays in Rg3(S)-treated senescent HDFs. The levels of ROS, adenosine triphosphate (ATP), and cyclic adenosine monophosphate (cAMP) as well as the mitochondrial DNA copy number, nicotinamide adenine dinucleotide (NAD)+/1,4-dihydronicotinamide adenine dinucleotide (NADH) ratio, and NAD-dependent sirtuins expression were measured and compared among young, old, and Rg3(S)-pretreated old HDFs. Major signaling pathways of phosphatidylinositol 3-kinase/Akt, 5' adenosine monophosphate-activated protein kinase (AMPK), and sirtuin 1/3, including cell cycle regulatory proteins, were examined by immunoblot analysis. Results: Ginsenoside Rg3(S) reversed the replicative senescence of HDFs by restoring the ATP level and NAD+/NADH ratio in downregulated senescent HDFs. Rg3(S) recovered directly the cellular levels of ROS and the NAD+/NADH ratio in young HDFs inactivated by rotenone. Rg3(S) mainly downregulated phosphatidylinositol 3-kinase/Akt through the inhibition of mTOR by cell cycle regulators like p53/p21 in senescent HDFs, whereas Rg3(R) did not alter the corresponding signaling pathways. Rg3(S)-activated sirtuin 3/PGC1α to stimulate mitochondrial biogenesis. Conclusion: Cellular molecular analysis suggests that Rg3(S) specifically reverses the replicative senescence of HDFs by modulating Akt-mTOR-sirtuin signaling to promote the biogenesis of mitochondria.

Keywords

References

  1. van Deursen JM. The role of senescent cells in ageing. Nature 2014;509:439-46. https://doi.org/10.1038/nature13193
  2. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res 1961;25:585-621. https://doi.org/10.1016/0014-4827(61)90192-6
  3. Davalli P, Mitic T, Caporali A, Lauriola A, D'Arca D. ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid Med Cell Longev 2016;2016:3565127.
  4. Davinelli S, Bertoglio JC, Polimeni A, Scapagnini G. Cytoprotective polyphenols against chronological skin aging and cutaneous photodamage. Curr Pharm Des 2018;24:99-105. https://doi.org/10.2174/1381612823666171109102426
  5. Sarubbo F, Moranta D, Asensio VJ, Miralles A, Esteban S. Effects of resveratrol and other polyphenols on the most common brain age-related diseases. Curr Med Chem 2017;24:4245-66.
  6. Oh SJ, Kim K, Lim CJ. Protective properties of ginsenoside Rb1 against UV-B radiation-induced oxidative stress in human dermal keratinocytes. Pharmazie 2015;70:381-7.
  7. Fernandez-Moriano C, Gonzalez-Burgos E, Iglesias I, Lozano R, Romez-Serranillos MP. Evaluation of the adaptogenic potential exerted by ginsenosides Rb1 and Rg1 against oxidative stress-mediated neuroptoxicity in an in vitro neuronal model. PLoS One 2017;12:e0182933. https://doi.org/10.1371/journal.pone.0182933
  8. Mohanan P, Subramaniyam S, Mathiyalagan R, Yang DC. Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. J Ginseng Res 2018;42:123-32. https://doi.org/10.1016/j.jgr.2017.01.008
  9. Guo M, Guo G, Xiao J, Sheng X, Zhang X, Tie Y, Cheng YK, Ji X. Ginsenoside Rg3 stereoisomers differentially inhibit vascular smooth muscle cell proliferation and migration in diabetic athereosclerosis. J Cell Mol Med 2018;22:3202-14. https://doi.org/10.1111/jcmm.13601
  10. Park MW, Ha J, Chung SH. 20(S)-ginsenoside Rg3 enhances glucosestimulated insulin secretion and activates AMPK. Biol Pharm Bull 2008;31:748-51. https://doi.org/10.1248/bpb.31.748
  11. Wei X, Chen J, Su F, Su X, Hu T, Hu S. Stereospecificity of ginsenoside Rg3 in promotion of the immune response to ovalbumin in mice. Int Immunol 2012;24:465-71. https://doi.org/10.1093/intimm/dxs043
  12. Lim CJ, Choi WY, Jung HJ. Stereoselective skin anti-photoaging properties of ginsenoside Rg3 in UV-B irradiated keratinocytes. Biol Pharm Bull 2014;37:1583-90. https://doi.org/10.1248/bpb.b14-00167
  13. Theurey P, Pizzo P. The aging mitochondria. Genes (Basel) 2018;9:E22.
  14. Sahin E, DePino RA. Axis of ageing: telomeres, p53 and mitochondria. Nat Rev Mol Cell Biol 2012;13:397-404. https://doi.org/10.1038/nrm3352
  15. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and Sirt1. Nature 2005;434:113-8. https://doi.org/10.1038/nature03354
  16. Tao R, Coleman MC, Pennington JD, Ozden O, Park SH, Jiang H, Kim HS, Flynn CR, Hill S, Hayes McDonald W, et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell 2010;40:893-904. https://doi.org/10.1016/j.molcel.2010.12.013
  17. Spadari RC, Cavadas C, de Carvalho AETS, Ortolani D, De Moura AL, Vassalo PF. Role of beta-adrenergic receptors and sirtuin signaling in the heart during aging, heart failure, and adaptation to stress. Cell Mol Neurobiol 2018;38:109-20. https://doi.org/10.1007/s10571-017-0557-2
  18. Hu D, Cao S, Zhang G, Xiao Y, Liu S, Shang Y. Florfenicol-induced mitochondrial dysfunction suppresses cell proliferation and autophagy in fibroblasts. Sci Rep 2017;7:13554. https://doi.org/10.1038/s41598-017-13860-9
  19. Jang IS, Jo E, Park SJ, Hwang IH, Kang HM, Lee JH, Kwon J, Son J, Kwon HJ, Choi JS. Proteomic analyses reveal that ginsenoside Rg3(S) partially reverses cellular senescence in human dermal fibroblasts by inducing peroxiredoxin. J Ginseng Re 2019. https://doi.org/10.1016/j.jgr.2018.07.008.
  20. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 1995;92:9363-7. https://doi.org/10.1073/pnas.92.20.9363
  21. Eruslanov E, Kusmartsev S. Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol Biol 2010;594:57-72. https://doi.org/10.1007/978-1-60761-411-1_4
  22. Quispe-Tintaya W, White RR, Popov VN, Vijg J, Maslov AY. Fast mitochondrial DNA isolation from mammalian cells for nex-generation sequencing. Biotechniques 2013;55:133-6. https://doi.org/10.2144/000114077
  23. Stein GH, Dulic V. Molecular mechanisms for the senescent cell cycle arrest. J Invest Dermatol Symp Proc 1998;3:14-8. https://doi.org/10.1038/jidsp.1998.5
  24. Chen C, Mu XY, Zhou Y, Shun K, Geng S, Liu J, Wang JW, Chen J, Li TY, Wang YP. Ginsenoside Rg1 enhances the resistance of hematopoietic stem/progenitor cells to radiation-induced aging in mice. Acta Pharmacol Sin 2014;35:143-50. https://doi.org/10.1038/aps.2013.136
  25. Chen X, Wang M, Xu X, Liu J, Mei B, Fu P, Zhao D, Sun L. Panax ginseng total protein promotes proliferation and secretion of collagen in NIH/3T3 cells by activating extracellular signal-related kinase pathway. J Ginseng Res 2017;41:411-8. https://doi.org/10.1016/j.jgr.2017.02.001
  26. Lee JO, Kim E, Kim JH, Hong YH, Kim HG, Jeong D, Kim J, Kim SH, Park C, Seo DB, et al. Antimelanogenesis and skin-protective activities of Panax ginseng calyx ethanol extract. J Ginseng Res 2018;42:389-99. https://doi.org/10.1016/j.jgr.2018.02.007
  27. McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol 2006;16:R551-60. https://doi.org/10.1016/j.sbi.2006.06.011
  28. Wiley CD, Campisi J. From ancient pathways to aging cells - connecting metabolism and cellular senescence. Cell Metab 2016;23:1013-21. https://doi.org/10.1016/j.cmet.2016.05.010
  29. James EL, Michalek RD, Pitiyage GN, de Castro AM, Vignola KS, Jones J, Mohney RP, Karoly ED, Prime SS, Parkinson EK. Senescent human fibroblasts show increased glycolysis and redox homeostasis with extracellular metabolomes that overlap with those of irreparable DNA damage, aging, and disease. J Proteome Res 2015;14:1854-71. https://doi.org/10.1021/pr501221g
  30. Chen X, Zhang J, Fang Y, Zhao C, Zhu Y. Ginsenoside Rg1 delays tert-butyl hydroperoxide-induced premature senescence in human WI-38 diploid fibroblast cells. J Gerontol A Biol Sci Med Sci 2008;63:253-64. https://doi.org/10.1093/gerona/63.3.253
  31. Blacker TS, Duchen MR. Investigating mitochondrial redox state using NADH and NADPH autofluorescence. Free Radic Biol Med 2016;100:53-65. https://doi.org/10.1016/j.freeradbiomed.2016.08.010
  32. Yang JL, Ha TK, Dhodary B, Kim KH, Park J, Lee CH, Kim YC, Oh WK. Dammarane triterpenes as potential SIRT1 activators from the leaves of Panax ginseng. J Nat Prod 2014;77:1615-23. https://doi.org/10.1021/np5002303
  33. Song Z, Liu Y, Hao B, Yu S, Zhang H, Liu D, Zhou B, Wu L, Wang M, Xiong Z, et al. Ginsenoside Rb1 prevents H2O2-induced HUVEC senescence by stimulating sirtuin-1 pathway. PLoS One 2014;9:e112699. https://doi.org/10.1371/journal.pone.0112699
  34. KimMJ, Koo YD, KimM, Lim S, Park YJ, Chung SS, Jang HC, Park KS. Rg3 improves mitochondrial function and the expression of key genes involved in mitochondrial biogenesis in C2C12 myotubes. Diabetes Metab J 2016;40:406-13. https://doi.org/10.4093/dmj.2016.40.5.406
  35. Raha S, Robinson BH. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 2000;25:502-8. https://doi.org/10.1016/S0968-0004(00)01674-1
  36. Ueno H, Miyoshi H, Ebisui K, Iwamura H. Comparison of the inhibitory action of natural rotenone and its stereosiomers with various NADH-ubiquinone reductases. Eur J Biochem 1994;225:411-7. https://doi.org/10.1111/j.1432-1033.1994.00411.x
  37. Yoo HS, Kim JM, Jo E, Cho CK, Lee SY, Kang HS, Lee MG, Yang PY, Jang IS. Modified Panax ginseng extract regulates autophagy by AMPK signaling in A547 human lung cancer cells. Oncol Rep 2017;37:3287-96. https://doi.org/10.3892/or.2017.5590
  38. Kwon HW, Shin JH, Cho HJ, Rhee MH, Park HJ. Total saponin from Korean Red Ginseng inhibits binding of adhesive proteins to glycoprotein IIb/IIIa via phosphorylation of VASP (Ser(157)) and dephosphorylation of PI3K and Akt. J Ginseng Res 2016;40:76-85. https://doi.org/10.1016/j.jgr.2015.05.004
  39. Han SY, Kim J, Kim E, Kim SH, Seo DB, Kim JH, Shin SS, Cho JY. AKT-targeted anti-inflammatory activity of Panax ginseng calyx ethanolic extract. J Ginseng Res 2018;42:496-503. https://doi.org/10.1016/j.jgr.2017.06.003
  40. Lopez-Lluch G, Irusta PM, Navas P, de Cabo R. Mitochondrial biogenesis and healthy aging. Exp Gerontol 2008;43:813-9. https://doi.org/10.1016/j.exger.2008.06.014
  41. Rato L, Duarte AI, Tomas GD, Santos MS, Moreira PI, Socorro S, Cavaco JE, Alves MG, Oliverira PF. Pre-diabetes alters testicular PGC1-a/SIRT3 axis modulating mitochondrial bioenergetics and oxidative stress. Biochim Biophys Acta 2014;1837:335-44. https://doi.org/10.1016/j.bbabio.2013.12.008

Cited by

  1. Effect of Antioxidants on the Fibroblast Replicative Lifespan In Vitro vol.2020, 2020, https://doi.org/10.1155/2020/6423783
  2. Effects of four new processing technologies on pesticide residues and saponins content in ginseng vol.44, pp.7, 2020, https://doi.org/10.1111/jfpp.14537
  3. Activation of Ca 2+ ‐AMPK‐mediated autophagy by ginsenoside Rg3 attenuates cellular senescence in human dermal fibroblasts vol.11, pp.8, 2021, https://doi.org/10.1002/ctm2.521