DOI QR코드

DOI QR Code

Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams

  • Al-Maliki, Ammar F.H. (Al-Mustansiriah University, Engineering Collage) ;
  • Ahmed, Ridha A. (Al-Mustansiriah University, Engineering Collage) ;
  • Moustafa, Nader M. (Al-Mustansiriah University, Engineering Collage) ;
  • Faleh, Nadhim M. (Al-Mustansiriah University, Engineering Collage)
  • Received : 2019.09.29
  • Accepted : 2019.11.17
  • Published : 2020.04.25

Abstract

In the present research, dynamic analysis of functionally graded (FG) graphene-reinforced beams under thermal loading has been carried out based on finite element approach. The presented formulation is based on a higher order refined beam element accounting for shear deformations. The graphene-reinforced beam is exposed to transverse periodic mechanical loading. Graphene platelets have three types of dispersion within the structure including uniform-type, linear-type and nonlinear-type. Convergences and validation studies of derived results from finite element approach are also presented. This research shows that the resonance behavior of a nanocomposite beam can be controlled by the GPL content and dispersions. Therefore, it is showed that the dynamical deflections are notably influenced by GPL weight fractions, types of GPL distributions, temperature changes, elastic foundation and harmonic load excitation frequency.

Keywords

Acknowledgement

Supported by : Mustansiriyah university

The authors would like to thank Mustansiriyah university (www.uomustansiriyah.edu.iq) Baghdad-Iraq for its support in the present work.

References

  1. Ahankari, S. S and Kar, K. K. (2010), "Hysteresis measurements and dynamic mechanical characterization of functionally graded natural rubber-carbon black composites", Polym. Eng. Sci., 50(5), 871-877. https://doi.org/10.1002/pen.21601.
  2. Al-Maliki, A. F., Faleh, N. M. and Alasadi, A. A. (2019), "Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities", Struct. Monitor Maintenance, 6(2), 147-159. https:// doi.org/10.12989/smm.2019.6.2.147.
  3. Ahmed, R. A., Fenjan, R. M. and Faleh, N. M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
  4. Barati, M. R. (2017), "Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities", Adv. Nano Res., 5(4), 393-414. https://doi.org/10.12989/anr.2017.5.4.393.
  5. Barati, M. R. and Zenkour, A. M. (2018), "Analysis of postbuckling of graded porous GPL-reinforced beams with geometrical imperfection", Mech. Adv. Mater. Struct., 26(6), 503-511. https://doi.org/10.1080/15376494.2017.1400622.
  6. Bounouara, F., Benrahou, K. H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227.
  7. Esawi, A. M. K., Morsi, K., Sayed, A., Taher, M and Lanka, S. (2011), "The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites", Compos. Part A Appl. Sci. Manufact., 42(3), 234-243. https://doi.org/10.1016/j.compositesa.2010.11.008
  8. Faleh, N.M., Ahmed, R.A., and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007.
  9. Fang, M., Wang, K., Lu, H., Yang, Y. and Nutt, S. (2009), "Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites", J. Mater. Chem., 19(38), 7098-7105. https://doi.org/10.1039/B908220D.
  10. Fenjan, R. M., Ahmed, R. A., Alasadi, A. A. and Faleh, N. M. (2019), "Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and non-uniform porosities", Coupl. Syst. Mech., 8(3), 247-257. https://doi.org/10.12989/csm.2019.8.3.247.
  11. Feng, C., Kitipornchai, S. and Yang, J. (2017), "Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs)", Eng. Struct., 140, 110-119. https://doi.org/10.1016/j.engstruct.2017.02.052.
  12. Gojny, F. H., Wichmann, M. H. G., Kopke, U., Fiedler, B and Schulte, K. (2004), "Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content", Compos. Sci. Technol., 64(15), 2363-2371. https://doi.org/10.1016/j.compscitech.2004.04.002
  13. Keleshteri, M. M., Asadi, H. and Wang, Q. (2017), "Large amplitude vibration of FG-CNT reinforced composite annular plates with integrated piezoelectric layers on elastic foundation", Thin-Walled Struct., 120, 203-214. https://doi.org/10.1016/j.tws.2017.08.035.
  14. King, J. A., Klimek, D. R., Miskioglu, I. and Odegard, G. M. (2013), "Mechanical properties of graphene nanoplatelet/epoxy composites", J. Appl. Polym Sci., 128(6), 4217-4223. https://doi.org/10.1002/app.38645.
  15. Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Design, 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
  16. Liew, K. M., Lei, Z. X. and Zhang, L. W. (2015), "Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review", Compos. Struct., 120, 90-97. https://doi.org/10.1016/j.compstruct.2014.09.041.
  17. Lin, F., Yang, C., Zeng, Q. H and Xiang, Y. (2018), "Morphological and mechanical properties of graphene-reinforced PMMA nanocomposites using a multiscale analysis", Comput. Mater Sci., 150, 107-120. https://doi.org/10.1016/j.commatsci.2018.03.048
  18. Mouffoki, A., Bedia, E. A., Houari, M. S. A., Tounsi, A. and Mahmoud, S. R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., 20(3), 369-383. https://doi.org/10.12989/sss.2017.20.3.369.
  19. Nieto, A., Bisht, A., Lahiri, D., Zhang, C and Agarwal, A. (2017), "Graphene reinforced metal and ceramic matrix composites: A review", Mater. Rev., 62(5), 241-302. https://doi.org/10.1080/09506608.2016.1219481
  20. Rafiee, M. A., Rafiee, J., Wang, Z., Song, H., Yu, Z. Z. and Koratkar, N. (2009), "Enhanced mechanical properties of nanocomposites at low graphene content", ACS nano, 3(12), 3884-3890. https://doi.org/10.1021/nn9010472.
  21. Rezaiee-Pajand, M., Masoodi, A. R. and Mokhtari, M. (2018), "Static analysis of functionally graded non-prismatic sandwich beams", Adv. Comput. Design, 3(2), 165-190. https://doi.org/10.12989/acd.2018.3.2.165.
  22. She, G.L., Yan, K.M., Zhang, Y.L., Liu, H.B. and Ren, Y.R. (2018), "Wave propagation of functionally graded porous nanobeams based on non-local strain gradient theory", Euro. Phys. J. Plus, 133(9), 368. https://doi.org/10.1140/epjp/i2018-12196-5
  23. She, G. L., Jiang, X. Y. and Karami, B. (2019), "On thermal snap-buckling of FG curved nanobeams", Mater. Res. Express, 6(11), 115008. https://doi.org/10.1088/2053-1591/ab44f1.
  24. Shen, H. S., Xiang, Y., Lin, F. and Hui, D. (2017), "Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments", Composites Part B Eng., 119, 67-78. https://doi.org/10.1016/j.compositesb.2017.03.020.
  25. Song, M., Kitipornchai, S. and Yang, J. (2017), "Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Struct., 159, 579-588. https://doi.org/10.1016/j.compstruct.2016.09.070.
  26. Yang, B., Yang, J. and Kitipornchai, S. (2017). Thermoelastic analysis of functionally graded graphene reinforced rectangular plates based on 3D elasticity", Meccanica, 52(10), 2275-2292. https://doi.org/10.1007/s11012-016-0579-8.
  27. Zemri, A., Houari, M. S. A., Bousahla, A. A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693.
  28. Zhang, L.W. (2017), "On the study of the effect of in-plane forces on the frequency parameters of CNT-reinforced composite skew plates", Compos. Struct., 160, 824-837. https://doi.org/10.1016/j.compstruct.2016.10.116.

Cited by

  1. Flow of casson nanofluid along permeable exponentially stretching cylinder: Variation of mass concentration profile vol.38, pp.1, 2020, https://doi.org/10.12989/scs.2021.38.1.033
  2. Effect of suction on flow of dusty fluid along exponentially stretching cylinder vol.10, pp.3, 2020, https://doi.org/10.12989/anr.2021.10.3.263