DOI QR코드

DOI QR Code

Isothermal and Kinetic Studies of the Adsorption Removal of Pb(II), Cu(II), and Ni(II) Ions from Aqueous Solutions using Modified Chara Sp. Algae

  • Kalash, Khairi R. (Environment and Water Directorate, Ministry of Science and Technology) ;
  • Alalwan, Hayder A. (Department of Petrochemical Techniques, Kut Technical Institute, Middle Technical University) ;
  • Al-Furaiji, Mustafa H. (Environment and Water Directorate, Ministry of Science and Technology) ;
  • Alminshid, Alaa. H. (Department of Chemistry, Wasit University) ;
  • Waisi, Basma I. (Department of Chemical Engineering, College of Engineering, University of Baghdad)
  • Received : 2019.10.27
  • Accepted : 2019.12.30
  • Published : 2020.05.01

Abstract

We investigated the individual biosorption removal of lead, copper, and nickel ions from aqueous solutions using Chara sp. algae powder in a batch mode. The impact of several parameters, such as initial concentration of the metal ions, contacting time, sorbent dose, and pH on the removal efficiency, was investigated. The maximum removal efficiency at optimum conditions was found to be 98% for Pb(II) at pH = 4, 90% for Cu(II) at pH = 5, and 80% for Ni(II) at pH = 5. The isotherm study was done under the optimum conditions for each metal by applying the experimental results onto the well-known Freundlich and Langmuir models. The results show that the Langmuir is better in describing the isotherm adsorption of Pb(II) and Ni(II), while the Freundlich is a better fit in the case of Cu(II). Similarly, a kinetic study was performed by using the pseudo-first and second-order equations. Our results show that the pseudo-second-order is better in representing the kinetic adsorption of the three metal ions.

Keywords

References

  1. Ozdemir,S., Kilinc, E., Poli, A., Nicolaus, B. and Guven, K., Chem. Eng. J., 152, 195-206(2009). https://doi.org/10.1016/j.cej.2009.04.041
  2. World Health Organization, Lead in drinking-water: background document for development of WHO guidelines for drinkingwater quality (2003).
  3. World Health Organization, Guidelines for drinking-water quality, 4th ed., (2011).
  4. Chen, S. Z., Yan, J. T., Li, J. F., Zhang, Y. and Lu, D. B., Microchim. Acta, 184, 2797-2803(2017). https://doi.org/10.1007/s00604-017-2309-x
  5. Hassanien, M. M., Mortada, W. I., Kenawy, I. M. and El-Daly, H., Appl. Spectrosc., 71, 288-299(2017). https://doi.org/10.1177/0003702816654166
  6. Liu, W., Zhang, P., Borthwick, A., Chen, H. and Ni, J., J. Colloid Interface Sci., 423, 67-75(2014). https://doi.org/10.1016/j.jcis.2014.02.030
  7. Cankara, S., Ozkutuk, E., Ozturk, O., Ersoz, A. and Say, R., Sep. Sci. Technol., 51, 901-908(2016). https://doi.org/10.1080/01496395.2015.1105265
  8. Yang, L., Xiao, J., Shen, Y., Liu, X., Li, W., Wang, W. and Yang, Y., Environ. Sci. and Pollut. Res., 24, 24214-24222(2017). https://doi.org/10.1007/s11356-017-0040-0
  9. Puranik, P. and Paknikar, K., Biotechnol. Prog., 15, 228-237(1999). https://doi.org/10.1021/bp990002r
  10. Ungureanu, G., Santos, S., Boaventura, R. and Botelho, C., J. of Environ. Manage., 151, 326-342(2015). https://doi.org/10.1016/j.jenvman.2014.12.051
  11. Alalwan, H. A., Abbas, M. N., Abudi, Z. N. and Alminshid, A. H., Environ. Technol. & Innovation, 12, 1-13(2018). https://doi.org/10.1016/j.eti.2018.07.001
  12. Alalwan, H. A., Abbas, M. N. and Alminshid, A. H., Indian Chem. Eng., 1-12(2019).
  13. Abbas, M. N. and Alalwan, H. A., Korean Chem. Eng. Res., 57, 283-288(2019). https://doi.org/10.9713/kcer.2019.57.2.283
  14. Garcia-Reyes, R. B. and Rangel-Mendez, J. R., Bioresour. Technol., 101, 8099-8108(2010). https://doi.org/10.1016/j.biortech.2010.06.020
  15. Alalwan, H. A., Alminshid, A. H. and Aljaafari, H. A., Renewable Energy Focus, 28, 127-139(2019). https://doi.org/10.1016/j.ref.2018.12.006
  16. Gupta, S. and Bux, F., Application of Microalgae in Wastewater Treatment., 1st ed., Springer, Switzerland(2019).
  17. Sooksawat, N., Meetam, M., Kruatrachue, M., Pokethitiyook, P. and Inthorn, D., J. Environ. Sci. Health, Part A, 52, 539-546(2017). https://doi.org/10.1080/10934529.2017.1282774
  18. Amirnia, S., Asaeda, T., Takeuchi, C. and Kaneko, Y., Sci. Total Environ., 646, 661-669(2019). https://doi.org/10.1016/j.scitotenv.2018.07.275
  19. Scheffer, M. and van Nes, E. Hydrobiologia, 584, 455-466 (2007). https://doi.org/10.1007/s10750-007-0616-7
  20. Kishore, J., Patil, R. and Hitendra, K., J. Chem. Pharma. Res., 7, 783-791(2015).
  21. Lodeiro, P., Cordero, B., Grille, Z., Herrero, R. and Sastre de Vicente, M., Biotechnol. Bioeng., 88, 237-247(2004). https://doi.org/10.1002/bit.20229
  22. Matheickal, J., Yu, Q. and Woodburn, G., Water Res., 33, 335-342 (1999). https://doi.org/10.1016/S0043-1354(98)00237-1
  23. Rubin, E., Rodriguez, P., Herrero, R. and Sastre de Vicente, M., J. Chem. Technol. Biotechnol., 81, 1093-1099(2006). https://doi.org/10.1002/jctb.1430
  24. Celekli, A. and Geyik, F., Bioresour. Technol., 102, 5634-5638(2011). https://doi.org/10.1016/j.biortech.2011.02.052
  25. Khataee, A., Dehghan, G., Ebadi, A., Zarei, M. and Pourhassan, M., Bioresour. Technol., 101, 2252-2258(2010). https://doi.org/10.1016/j.biortech.2009.11.079
  26. Kowanga, K. D., Gatebe, E., Mauti, G. O. and Mauti, E. M., J. Phytopharmacol., 5, 71-78(2016).
  27. Fiol, N., Villaescusa, I., Martinez, M., Miralles, N., J. Poch, and J. Serarols, Sep. Purif. Technol., 50, 132-140(2006). https://doi.org/10.1016/j.seppur.2005.11.016
  28. Elmaci, A., Yonar, T. and Ozengin, N., Water Environ. Res., 79, 1000-1005(2007). https://doi.org/10.2175/106143007X183961
  29. Tzvetkova, P. and Nickolov, R., J. of the Univ. of Chem. Technol. & Metall., 47, (2012).
  30. Alothman, Z. A. and Apblett, A. W., J. Hazard. Mater., 182, 581-590(2010). https://doi.org/10.1016/j.jhazmat.2010.06.072
  31. Benhamou, A., Baudu, M., Derriche, Z. and Basly, J., J. Hazard. Mater., 171, 1001-1008(2009). https://doi.org/10.1016/j.jhazmat.2009.06.106
  32. Meunier, N., Drogui, P., Montane, C., Hausler, R., Mercier, G. and Blais, J., J. Hazard. Mater., 137, 581-590(2006). https://doi.org/10.1016/j.jhazmat.2006.02.050
  33. Tor, A., Buyukerkek, T., Cengelolu, Y. and Ersoz, M., Desalination, 171, 233-241(2005). https://doi.org/10.1016/j.desal.2004.02.106
  34. Argun, M., Dursun, S., Ozdemir, C. and Karatas, M., J. Hazard. Mater., 141, 77-85(2007). https://doi.org/10.1016/j.jhazmat.2006.06.095
  35. Ucer, A., Uyanik, A. and Aygun, S., Sep. Purif. Technol., 47, 113-118(2006). https://doi.org/10.1016/j.seppur.2005.06.012
  36. Argun, M., Dursun, S. and Karatas, M., Desalination, 249, 519-527(2009). https://doi.org/10.1016/j.desal.2009.01.020
  37. Bulut, Y. and Tez, Z., Fresenius Environ. Bull., 12, 1499-1504 (2003).
  38. Shukla, S. and Pai, R., Bioresour. Technol., 96, 1430-1438(2005). https://doi.org/10.1016/j.biortech.2004.12.010

Cited by

  1. The impact of Methanol-Diesel compound on the performance of a Four-Stroke CI engine vol.42, pp.p5, 2020, https://doi.org/10.1016/j.matpr.2020.12.247
  2. Synthesis of ZnO-CoO/Al2O3 nanoparticles and its application as a catalyst in ethanol conversion to acetone vol.3, 2020, https://doi.org/10.1016/j.rechem.2021.100249
  3. Biosorption of Nickel from Metal Finishing Effluent Using Lichen Parmotrema tinctorum Biomass vol.232, pp.11, 2021, https://doi.org/10.1007/s11270-021-05431-6