DOI QR코드

DOI QR Code

Preoperative imaging of the inferior alveolar nerve canal by cone-beam computed tomography and 1-year neurosensory recovery following mandibular setback through bilateral sagittal split ramus osteotomy: a randomized clinical trial

  • Hassani, Ali (Department of Oral and Maxillofacial Surgery and Implant Research Center, Islamic Azad University) ;
  • Rakhshan, Vahid (Department of Dental Anatomy, Dental School, Islamic Azad University) ;
  • Hassani, Mohammad (Craniomaxillofacial Research Center, Islamic Azad University) ;
  • Aghdam, Hamidreza Mahaseni (Department of Oral and Maxillofacial Surgery and Implant Research Center, Islamic Azad University)
  • Received : 2019.06.06
  • Accepted : 2019.08.17
  • Published : 2020.02.29

Abstract

Objectives: One of the most common complications of bilateral sagittal split ramus osteotomy (BSSRO) is neurosensory impairment of the inferior alveolar nerve (IAN). Accurate preoperative determination of the position of the IAN canal within the mandible using cone-beam computed tomography (CBCT) is recommended to prevent IAN dysfunction during BSSRO and facilitate neurosensory improvement after BSSRO. Materials and Methods: This randomized clinical trial consisted of 86 surgical sites in 43 patients (30 females and 13 males), including 21 cases (42 sides) and 22 controls (44 sides). Panoramic and lateral cephalographs were obtained from all patients. In the experimental group, CBCT was also performed from both sides of the ramus and mandibular body. Neurosensory function of the IAN was subjectively assessed using a 5-point scale preoperatively and 7 days, 1 month, 3 months, 6 months, and 12 months post-surgery. Data were analyzed using Fisher's test, Spearman's test, t-test, linear mixed-model regression, and repeated-measures ANCOVA (α=0.05, 0.01). Results: Mean sensory scores in the control group were 1.57, 2.61, 3.34, 3.73, and 4.20 over one year and were 1.69, 3.00, 3.60, 4.19, and 4.48 in the CBCT group. Significant effects were detected for CBCT intervention (P=0.002) and jaw side (P=0.003) but not for age (P=0.617) or displacement extent (P=0.122). Conclusion: Preoperative use of CBCT may help surgeons to practice more conservative surgery. Neurosensory deficits might heal faster on the right side.

Keywords

References

  1. Antony PG, Sebastian A, Varghese KG, Sobhana CR, Mohan S, Soumithran CS, et al. Neurosensory evaluation of inferior alveolar nerve after bilateral sagittal split ramus osteotomy of mandible. J Oral Biol Craniofac Res 2017;7:81-8. https://doi.org/10.1016/j.jobcr.2017.03.004
  2. Aizenbud D, Ciceu C, Hazan-Molina H, Abu-El-Naaj I. Relationship between inferior alveolar nerve imaging and neurosensory impairment following bilateral sagittal split osteotomy in skeletal class III cases with mandibular prognathism. Int J Oral Maxillofac Surg 2012;41:461-8. https://doi.org/10.1016/j.ijom.2011.10.024
  3. Tamas F. Position of the mandibular canal. Int J Oral Maxillofac Surg 1987;16:65-9. https://doi.org/10.1016/S0901-5027(87)80032-2
  4. Ylikontiola L, Kinnunen J, Oikarinen K. Factors affecting neurosensory disturbance after mandibular bilateral sagittal split osteotomy. J Oral Maxillofac Surg 2000;58:1234-9; discussion 1239-40. https://doi.org/10.1053/joms.2000.16621
  5. Brusati R, Fiamminghi L, Sesenna E, Gazzotti A. Functional disturbances of the inferior alveolar nerve after sagittal osteotomy of the mandibular ramus: operating technique for prevention. J Maxillofac Surg 1981;9:123-5. https://doi.org/10.1016/S0301-0503(81)80028-8
  6. Ylikontiola L, Moberg K, Huumonen S, Soikkonen K, Oikarinen K. Comparison of three radiographic methods used to locate the mandibular canal in the buccolingual direction before bilateral sagittal split osteotomy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2002;93:736-42. https://doi.org/10.1067/moe.2002.122639
  7. Westermark A, Bystedt H, von Konow L. Inferior alveolar nerve function after mandibular osteotomies. Br J Oral Maxillofac Surg 1998;36:425-8. https://doi.org/10.1016/S0266-4356(98)90457-0
  8. Hasani A, Ahmadi Moshtaghin F, Roohi P, Rakhshan V. Diagnostic value of cone beam computed tomography and panoramic radiography in predicting mandibular nerve exposure during third molar surgery. Int J Oral Maxillofac Surg 2017;46:230-5.
  9. Neves FS, Souza TC, Almeida SM, Haiter-Neto F, Freitas DQ, Boscolo FN. Correlation of panoramic radiography and cone beam CT findings in the assessment of the relationship between impacted mandibular third molars and the mandibular canal. Dentomaxillofac Radiol 2012;41:553-7. https://doi.org/10.1259/dmfr/22263461
  10. Arora A, Patil BA, Sodhi A. Validity of the vertical tube-shift method in determining the relationship between the mandibular third molar roots and the inferior alveolar nerve canal. J Korean Assoc Oral Maxillofac Surg 2015;41:66-73. https://doi.org/10.5125/jkaoms.2015.41.2.66
  11. Szalma J, Lempel E, Jeges S, Szabo G, Olasz L. The prognostic value of panoramic radiography of inferior alveolar nerve damage after mandibular third molar removal: retrospective study of 400 cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109:294-302. https://doi.org/10.1016/j.tripleo.2009.09.023
  12. Kositbowornchai S, Densiri-aksorn W, Piumthanaroj P. Ability of two radiographic methods to identify the closeness between the mandibular third molar root and the inferior alveolar canal: a pilot study. Dentomaxillofac Radiol 2010;39:79-84. https://doi.org/10.1259/dmfr/12537634
  13. Tantanapornkul W, Okochi K, Bhakdinaronk A, Ohbayashi N, Kurabayashi T. Correlation of darkening of impacted mandibular third molar root on digital panoramic images with cone beam computed tomography findings. Dentomaxillofac Radiol 2009;38:11-6. https://doi.org/10.1259/dmfr/83819416
  14. Nakamori K, Tomihara K, Noguchi M. Clinical significance of computed tomography assessment for third molar surgery. World J Radiol 2014;6:417-23. https://doi.org/10.4329/wjr.v6.i7.417
  15. Obwegeser HL. Orthognathic surgery and a tale of how three procedures came to be: a letter to the next generations of surgeons. Clin Plast Surg 2007;34:331-55. https://doi.org/10.1016/j.cps.2007.05.014
  16. Westermark A, Bystedt H, von Konow L. Patients' evaluation of the final result of sagittal split osteotomy: is it influenced by impaired sensitivity of the lower lip and chin? Int J Adult Orthodon Orthognath Surg 1999;14:135-9.
  17. Yamamoto R, Nakamura A, Ohno K, Michi KI. Relationship of the mandibular canal to the lateral cortex of the mandibular ramus as a factor in the development of neurosensory disturbance after bilateral sagittal split osteotomy. J Oral Maxillofac Surg 2002;60:490-5. https://doi.org/10.1053/joms.2002.31843
  18. Rajchel J, Ellis E 3rd, Fonseca RJ. The anatomical location of the mandibular canal: its relationship to the sagittal ramus osteotomy. Int J Adult Orthodon Orthognath Surg 1986;1:37-47.
  19. Yoshioka I, Tanaka T, Khanal A, Habu M, Kito S, Kodama M, et al. Relationship between inferior alveolar nerve canal position at mandibular second molar in patients with prognathism and possible occurrence of neurosensory disturbance after sagittal split ramus osteotomy. J Oral Maxillofac Surg 2010;68:3022-7. https://doi.org/10.1016/j.joms.2009.09.046
  20. De Vos W, Casselman J, Swennen GR. Cone-beam computerized tomography (CBCT) imaging of the oral and maxillofacial region: a systematic review of the literature. Int J Oral Maxillofac Surg 2009;38:609-25. https://doi.org/10.1016/j.ijom.2009.02.028
  21. Hashiba Y, Ueki K, Marukawa K, Shimada M, Yoshida K, Shimizu C, et al. A comparison of lower lip hypoesthesia measured by trigeminal somatosensory-evoked potential between different types of mandibular osteotomies and fixation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;104:177-85. https://doi.org/10.1016/j.tripleo.2006.11.038
  22. Anderson LC, Kosinski TF, Mentag PJ. A review of the intraosseous course of the nerves of the mandible. J Oral Implantol 1991;17:394-403.
  23. Gowgiel JM. The position and course of the mandibular canal. J Oral Implantol 1992;18:383-5.
  24. Ozturk A, Potluri A, Vieira AR. Position and course of the mandibular canal in skulls. Oral Surg Oral Med Oral Pathol Oral Radiol 2012;113:453-8. https://doi.org/10.1016/j.tripleo.2011.03.038
  25. Colella G, Cannavale R, Vicidomini A, Lanza A. Neurosensory disturbance of the inferior alveolar nerve after bilateral sagittal split osteotomy: a systematic review. J Oral Maxillofac Surg 2007;65:1707-15. https://doi.org/10.1016/j.joms.2007.05.009
  26. Al-Bishri A, Barghash Z, Rosenquist J, Sunzel B. Neurosensory disturbance after sagittal split and intraoral vertical ramus osteotomy: as reported in questionnaires and patients' records. Int J Oral Maxillofac Surg 2005;34:247-51. https://doi.org/10.1016/j.ijom.2004.06.009
  27. Cunningham LL, Tiner BD, Clark GM, Bays RA, Keeling SD, Rugh JD. A comparison of questionnaire versus monofilament assessment of neurosensory deficit. J Oral Maxillofac Surg 1996;54:454-9; discussion 459-60. https://doi.org/10.1016/S0278-2391(96)90120-2
  28. Chen N, Neal CE, Lingenbrink P, Bloomquist D, Kiyak HA. Neurosensory changes following orthognathic surgery. Int J Adult Orthodon Orthognath Surg 1999;14:259-67.
  29. Bell WH. Modern practice in orthognathic and reconstructive surgery. Philadelphia: Saunders; 1992.
  30. Manor Y, Blinder D, Taicher S. Sequence of treatment in mandibular prognathism patients. Cranio 2006;24:95-7. https://doi.org/10.1179/crn.2006.015
  31. Romeo U, Del Vecchio A, Palaia G, Tenore G, Visca P, Maggiore C. Bone damage induced by different cutting instruments--an in vitro study. Braz Dent J 2009;20:162-8. https://doi.org/10.1590/S0103-64402009000200013