DOI QR코드

DOI QR Code

Applications of Voltammetry in Lithium Ion Battery Research

  • Kim, Taewhan (Department of Energy Science, Sungkyunkwan University) ;
  • Choi, Woosung (Department of Energy Science, Sungkyunkwan University) ;
  • Shin, Heon-Cheol (School of Materials Science and Engineering, Pusan National University) ;
  • Choi, Jae-Young (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Kim, Ji Man (Department of Chemistry, Sungkyunkwan University) ;
  • Park, Min-Sik (Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University) ;
  • Yoon, Won-Sub (Department of Energy Science, Sungkyunkwan University)
  • Received : 2019.11.04
  • Accepted : 2019.11.12
  • Published : 2020.02.28

Abstract

Li ion battery (LIB) is one of the most remarkable energy storage devices currently available in various applications. With a growing demand for high-performance batteries, the role of electrochemical analysis for batteries, especially, electrode reactions are becoming very important and crucial. Among various analytical methods, cyclic voltammetry (CV) is very versatile and widely used in many fields of electrochemistry. Through CV, it is possible to know electrochemical factors affecting the reaction voltage and reversibility, and furthermore, quantitative analysis on Li+ diffusivity as well as intercalation and capacitive reactions, and also anionic redox reaction. However, the explanation or interpretation of the results of CV is often deficient or controversial. In this mini-review, we briefly introduce the principle of cyclic voltammetry and its applications in LIB to bring a better understanding of the electrochemical reaction mechanisms involved in LIB.

Keywords

References

  1. W. Lee, S. Muhammad, C. Sergey, H. Lee, J. Yoon, Y.M. Kang, W.-S. Yoon, Angew. Chemie Int. Ed., 2019.
  2. J.H. Um, K. Palanisamy, M. Jeong, H. Kim, W.-S. Yoon, ACS Nano, 2019, 13, 5674-5685. https://doi.org/10.1021/acsnano.9b00964
  3. S. Muhammad, S. Yun, K. Palanisamy, H. Kim, W.S. Yoon, J. Power Sources, 2019, 423, 323-330. https://doi.org/10.1016/j.jpowsour.2019.03.078
  4. H. Kim, D.S. Yang, J.H. Um, M. Balasubramanian, J. Yoo, H. Kim, S. Bin Park, J.M. Kim, W.S. Yoon, J. Power Sources, 2019, 413(December 2018), 241-249. https://doi.org/10.1016/j.jpowsour.2018.12.035
  5. Y. Kim, D.S. Kim, J.H. Um, J. Yoon, J.M. Kim, H. Kim, W.S. Yoon, ACS Appl. Mater. Interfaces, 2018, 10(35), 29992-29999. https://doi.org/10.1021/acsami.8b09939
  6. W. Lee, S. Muhammad, T. Kim, H. Kim, E. Lee, M. Jeong, S. Son, J.H. Ryou, W.S. Yoon, Adv. Energy Mater, 2018, 8, 1701788. https://doi.org/10.1002/aenm.201701788
  7. H. Lindstrom, S. Sodergren, A. Solbrand, H. Rensmo, J. Hjelm, A. Hagfeldt, S.-E. Lindquist, J. Phys. Chem. B, 1997, 101(39), 7710-7716. https://doi.org/10.1021/jp970489r
  8. D. J. Chesney, J. Am. Chem. Soc., 1996, 118(44), 10946-10946. https://doi.org/10.1021/ja965572r
  9. K. Brainina, E. Neyman, 1994, Electroanalytical Stripping Methods, Wiley.
  10. D.A. Skoog, F.J. Holler, S.R. Crouch, 2017, Principles of Instrumental Analysis, Cengage learning.
  11. E. Talaie, P. Bonnick, X. Sun, Q. Pang, X. Liang, L.F. Nazar, Chem. Mater., 2017, 2990-105.
  12. W.F. Potyrailo, R. A.; Maier, CRC Press, 2006, Combinatorial and High- Throughput Discovery and Optimization of Catalysts and Materials.
  13. D.A.C. Brownson, D.K. Kampouris, C.E. Banks, Chem. Soc. Rev., 2012, 41(21), Graphene Electrochemistry: Fundamental Concepts through to Prominent Applications.
  14. H. Matsuda, Y. Ayabe, Zeitschrift fur Elektrochemie, Berichte der Bunsengesellschaft für Phys. Chemie, 1955, 59(6), 494-503.
  15. M. Takahashi, S. ichi Tobishima, K. Takei, Y. Sakurai, Solid State Ionics, 2002, Solid State Ionics.
  16. K. Aoki, K. Tokuda, H. Matsuda, J. Electroanal. Chem., 1983, 146(2), 417-424. https://doi.org/10.1016/S0022-0728(83)80601-9
  17. W. Chen, Z. Fan, L. Gu, X. Bao, C. Wang, Chem. Commun., 2010, 46(22), 3905-3907. https://doi.org/10.1039/c000517g
  18. A. Krause, P. Kossyrev, M. Oljaca, S. Passerini, M. Winter, A. Balducci, J. Power Sources, 2011, 196(20), 8836-8842. https://doi.org/10.1016/j.jpowsour.2011.06.019
  19. S. Yang, X. Zhou, J. Zhang, Z. Liu, J. Mater. Chem., 2010, 20(37), 8086-8091. https://doi.org/10.1039/c0jm01346c
  20. H. Lindstrom, S. Sodergren, A. Solbrand, H. Rensmo, J. Hjelm, A. Hagfeldt, S.-E. Lindquist, J. Phys. Chem. B, 1997, 101(39), 7717-7722. https://doi.org/10.1021/jp970490q
  21. J. Wang, J. Polleux, J. Lim, B. Dunn, J. Phys. Chem. C, 2007, 111(40), 14925-14931. https://doi.org/10.1021/jp074464w
  22. W.-R. Liu, Z.-Z. Guo, W.-S. Young, D.-T. Shieh, H.-C. Wu, M.-H. Yang, N.-L. Wu, J. Power Sources, 2005, 140(1), 139-144. https://doi.org/10.1016/j.jpowsour.2004.07.032
  23. W. Wu, S. Shabhag, J. Chang, A. Rutt, J.F. Whitacre, J. Electrochem. Soc., 2015, 162(6), A803-A808. https://doi.org/10.1149/2.0121506jes
  24. G. Redmond, D. Fitzmaurice, 1993, 1426-1430.
  25. G. Rothenberger, D. Fitzmaurice, M. Gratzel, 1992, 5983-5986.
  26. T.-C. Liu, J. Electrochem. Soc., 1998, 145(6), 1882. https://doi.org/10.1149/1.1838571
  27. Z. Chen, V. Augustyn, X. Jia, Q. Xiao, B. Dunn, Y. Lu, ACS Nano, 2012, 6(5), 4319-4327. https://doi.org/10.1021/nn300920e
  28. X. Wang, G. Li, Z. Chen, V. Augustyn, X. Ma, G. Wang, B. Dunn, Y. Lu, Adv. Energy Mater., 2011, 1(6), 1089-1093. https://doi.org/10.1002/aenm.201100332
  29. H.D. Abruna, M.A. Lowe, P.-L. Taberna, B. Dunn, V. Augustyn, S.H. Tolbert, J.W. Kim, J. Come, P. Simon, Nat. Mater., 2013, 12(6), 518-522. https://doi.org/10.1038/nmat3601
  30. S.K. Jung, H. Kim, M.G. Cho, S.P. Cho, B. Lee, H. Kim, Y.U. Park, J. Hong, K.Y. Park, G. Yoon, W.M. Seong, Y. Cho, M.H. Oh, H. Kim, H. Gwon, I. Hwang, T. Hyeon, W.S. Yoon, K. Kang, Nat. Energy, 2017, 2(2), 4-12.
  31. Y.S. Lee, K.S. Ryu, Sci. Rep., 2017, 7(1), 1-13. https://doi.org/10.1038/s41598-016-0028-x
  32. H. Kim, J. Hong, Y.-U. Park, J. Kim, I. Hwang, K. Kang, Adv. Funct. Mater., 2015, 25(4), 534-541. https://doi.org/10.1002/adfm.201402984
  33. K.-C. Tsay, L. Zhang, J. Zhang, Electrochim. Acta, 2012, 60 428-436. https://doi.org/10.1016/j.electacta.2011.11.087
  34. O.P. Siclovan, G. Zappi, G.L. Soloveichik, ECS Electrochem. Lett., 2014, 3(12), H41-H43. https://doi.org/10.1149/2.0051412eel
  35. X. Hua, Z. Liu, M.G. Fischer, O. Borkiewicz, P.J. Chupas, K.W. Chapman, U. Steiner, P.G. Bruce, C.P. Grey, J. Am. Chem. Soc., 2017, 139(38), 13330-13341. https://doi.org/10.1021/jacs.7b05228
  36. M. Opitz, J. Yue, J. Wallauer, B. Smarsly, B. Roling, Electrochim. Acta, 2015, 168 125-132. https://doi.org/10.1016/j.electacta.2015.03.186
  37. M. Park, X. Zhang, M. Chung, G.B. Less, A.M. Sastry, J. Power Sources, 2010, 195(24), 7904-7929. https://doi.org/10.1016/j.jpowsour.2010.06.060
  38. S. Ardizzone, G. Fregonara, S. Trasatti, Electrochim. Acta, 1990, 35(1), 263-267. https://doi.org/10.1016/0013-4686(90)85068-X
  39. S.B. Tang, J. Alloys Compd., 2008, 449(1-2), 300-303. https://doi.org/10.1016/j.jallcom.2005.12.131
  40. S.B. Tang, M.O. Lai, L. Lu, Mater. Chem. Phys., 2008, 111, 149-153. https://doi.org/10.1016/j.matchemphys.2008.03.041
  41. X.H. Rui, N. Ding, J. Liu, C. Li, C.H. Chen, Electrochim. Acta, 2010, (55), 2384-2390.
  42. N. Ding, J. Xu, Y.X. Yao, G. Wegner, X. Fang, C.H. Chen, I. Lieberwirth, Solid State Ionics, 2009, 180, 222-225. https://doi.org/10.1016/j.ssi.2008.12.015
  43. H.C. Shin, S. Il Pyun, Electrochim. Acta, 2001, 46(16), 2477-2485. https://doi.org/10.1016/S0013-4686(01)00457-1
  44. G. Assat, D. Foix, C. Delacourt, A. Iadecola, R. Dedryvere, J.M. Tarascon, Nat. Commun., 2017, 8(1).

Cited by

  1. Novel Approach Through the Harmonized Sulfur in Disordered Carbon Structure for High-Efficiency Sodium-Ion Exchange vol.12, pp.39, 2020, https://doi.org/10.1021/acsami.0c12677
  2. Electrochemical Properties of Cathode according to the Type of Sulfide Electrolyte and the Application of Surface Coating vol.12, pp.1, 2021, https://doi.org/10.33961/jecst.2020.01361
  3. Interconnected NiCo2O4 nanosheet arrays grown on carbon cloth as a host, adsorber and catalyst for sulfur species enabling high-performance Li-S batteries vol.3, pp.6, 2020, https://doi.org/10.1039/d0na00947d
  4. Trust is good, control is better: a review on monitoring and characterization techniques for flow battery electrolytes vol.8, pp.7, 2020, https://doi.org/10.1039/d0mh01632b
  5. Dual lithium storage of Pt electrode: alloying and reversible surface layer vol.9, pp.34, 2020, https://doi.org/10.1039/d1ta04379j
  6. Enhanced Chemical and Electrochemical Stability of Polyaniline-Based Layer-by-Layer Films vol.13, pp.17, 2020, https://doi.org/10.3390/polym13172992
  7. Crystalline chlorinated contorted hexabenzocoronene: a universal organic anode for advanced alkali-ion batteries vol.9, pp.36, 2020, https://doi.org/10.1039/d1ta05224a
  8. Superior Sodium Storage Properties in the Anode Material NiCr2S4 for Sodium‐Ion Batteries: An X‐ray Diffraction, Pair Distribution Function, and X‐ray Absorptio vol.33, pp.44, 2020, https://doi.org/10.1002/adma.202101576
  9. Energy density improvement by controlling the properties of conductive agents in Ni‐rich cathodes vol.46, pp.2, 2020, https://doi.org/10.1002/er.7298
  10. Triggering anomalous capacity by nanoengineered ordered mesoporous structure for Co3O4 anode material in Li-ion rechargeable batteries vol.575, 2022, https://doi.org/10.1016/j.apsusc.2021.151744
  11. Exploring the electrochemical properties of Na2S -V2O5-P2O5 glass-ceramic nanocomposites as a cathode for magnesium-ion batteries vol.895, pp.p2, 2020, https://doi.org/10.1016/j.jallcom.2021.162644
  12. Potentiometric entropy and operando calorimetric measurements reveal fast charging mechanisms in PNb 9 O25 vol.520, 2020, https://doi.org/10.1016/j.jpowsour.2021.230776