DOI QR코드

DOI QR Code

Modified Glassy Carbon Electrode with Polypyrrole Nanocomposite for the Simultaneous Determination of Ascorbic acid, Dopamine, Uric acid, and Folic Acid

  • Ghanbari, Khadijeh (Department of Chemistry, Faculty of physics and chemistry, School of Science, Alzahra University) ;
  • Bonyadi, Sepideh (Department of Chemistry, Faculty of physics and chemistry, School of Science, Alzahra University)
  • 투고 : 2019.07.31
  • 심사 : 2019.09.09
  • 발행 : 2020.02.28

초록

A fast and simple method for synthesis of CuxO-ZnO/PPy/RGO nanocomposite by electrochemical manner have been reported in this paper. For testing the utility of this nanocomposite we modified a GCE with the nanocomposite to yield a sensor for simultaneous determination of four analytes namely ascorbic acid (AA), dopamine (DA), uric acid (UA), and folic acid (FA). Cyclic voltammetry (CV) and Differential pulse voltammetry (DPV) selected for the study. The modified electrode cause to enhance electron transfer rate so overcome to overlapping their peaks and consequently having the ability to the simultaneous determination of AA, DA, UA, and FA. To synthesis confirmation of the nanocomposite, Field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and electrochemical impedance spectroscopy (EIS) were applied. The linearity ranges were 0.07-485 μM, 0.05-430 μM, 0.02-250 μM and 0.022-180 μM for AA, DA, UA, and FA respectively and the detection limits were 22 nM, 10 nM, 5 nM and 6 nM for AA, DA, UA, and FA respectively Also, the obtained electrode can be used for the determination of the AA, DA, UA, and FA in human blood, and human urine real samples.

키워드

참고문헌

  1. W.H. Sebrell, S. Harris (Eds.), The Vitamins, Academic Press, NEW YORK, second ed., 1967.
  2. O. Arrigoni, C.D. Tullio, Ascorbic acid: much more than just an antioxidant, Biochim. Biophys. Acta, 2002, 1569(1-3), 1-9. https://doi.org/10.1016/S0304-4165(01)00235-5
  3. N. Ben-Jonathan, Endocr Rev., 1985, 6(4), 564-589. https://doi.org/10.1210/edrv-6-4-564
  4. E.J. Nestler, Cell, 1994, 79(6), 923-926. https://doi.org/10.1016/0092-8674(94)90022-1
  5. D.M. Jackson, A. Westlind-Danielsson, Pharmacol Ther, 1994, 64(2), 291-370. https://doi.org/10.1016/0163-7258(94)90041-8
  6. R.J. Marttila, Handbook of Parkinson's disease, p. 35. in: W.C. Koller (Ed.), Marcel Dekker, New York, 1987.
  7. V.V.S.E. Dutt, H.A. Mottola, Anal. Chem., 1974, 46(12), 1777-1781. https://doi.org/10.1021/ac60348a041
  8. S.N. Young, Can. J. Physiol. Pharmacol. 1991, 69(7), 893-903. https://doi.org/10.1139/y91-136
  9. S.N. Young, Can. J. Physiol. Pharmacol., 1991, 69(7), 893-903. https://doi.org/10.1139/y91-136
  10. A. Gottas, A. Ripel, F. Boix, V. Vindenes, J. Mor, E.L. Oiestad, J. Pharmacol. Toxicol. Methods, 2015, 74, 75-79. https://doi.org/10.1016/j.vascn.2015.06.002
  11. X. Wei, Z. Zhang, Z. Wang, Microchem. J., 2019, 145, 55-58. https://doi.org/10.1016/j.microc.2018.10.004
  12. W. Ga, L. Qi, Z. Liu, S. Majeed, S.A. Kitte, G. Xu, Sens. Actuators B, 2017, 238, 468-472. https://doi.org/10.1016/j.snb.2016.07.093
  13. H.L. Lee, S.C. Chen, Talanta, 2004, 64(3), 750-757. https://doi.org/10.1016/j.talanta.2004.03.046
  14. J.H. An, D.K. Choi, K.J. Lee, J.W. Choi, Biosens. Bioelectron., 2015, 67, 739-746. https://doi.org/10.1016/j.bios.2014.10.049
  15. S. Boroumand, M. Arab Chamjangali, Gh. Bagherian, Spectrochim. Acta Part A, 2017, 174, 203-213. https://doi.org/10.1016/j.saa.2016.11.031
  16. J.H. Ke, H.J. Tseng, C.T. Hsu, J.C. Chen, G. Muthuraman, J.M. Zen, Sens. Actuators B, 2008, 130(2), 614-619. https://doi.org/10.1016/j.snb.2007.10.023
  17. A. Babaei, A.R. Taheri, Sens. Actuators B, 2013, 176, 543-551. https://doi.org/10.1016/j.snb.2012.09.021
  18. M. Hasanzadeh, N. Shadjoub, E. Omidinia, Methods, 2013, 219(1), 52-60.
  19. A. Domenech, H. Garcia, M.T. Domenech-Carbo, M.S. Galletero, Anal. Chem., 2002, 74(3), 562-569. https://doi.org/10.1021/ac010657i
  20. A.A. Hathoot, U.S. Yousef, A.S. Shatla, M. Abdel-Azzem, Electrochim. Acta, 2012, 85, 531-537. https://doi.org/10.1016/j.electacta.2012.08.063
  21. Kh. Ghanbari, N. Hajheidari, J. Polym. Res., 2015, 22(8), 152. https://doi.org/10.1007/s10965-015-0797-0
  22. A.A. Abdelwahab, Y.B. Shim, Sens. Actuators B, 2015, 221, 659-665. https://doi.org/10.1016/j.snb.2015.07.016
  23. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 2004, 306(5696), 666-669. https://doi.org/10.1126/science.1102896
  24. M. Arvand, T.M. Gholizadeh, Colloids Surf. B 2013, 103, 84-93. https://doi.org/10.1016/j.colsurfb.2012.10.024
  25. R. Rezaei, M.M. Foroughi, H. Beitollahi, R. Alizadeh, Russ. J. Electrochem., 2018, 54(11), 860-866. https://doi.org/10.1134/S1023193518130347
  26. Kh. Ghanbari, S. Bonyadi, New J. Chem., 2018, 42(11), 8512-8523. https://doi.org/10.1039/C8NJ00857D
  27. S. Stankovich, D.A. Dikin, G.H.B. Dommett, Nature, 2006, 442(7100), 282-286. https://doi.org/10.1038/nature04969
  28. C. Tseng, Y. Chou, C. Liu, Y. Liu, M. Ger, Y. Shu, Mater. Res. Bull., 2012, 47(1), 96-100. https://doi.org/10.1016/j.materresbull.2011.09.027
  29. S. Luo, F. Su, C. Liu, J. Li, R. Liu, Y. Xiao, Y. Li, X. Liu, Q. Cai, Talanta, 2011, 86, 157-163. https://doi.org/10.1016/j.talanta.2011.08.051
  30. C. Sun, G. Maduraiveeran, P. Dutta, Sens. Actuators B, 2013, 186, 117-125. https://doi.org/10.1016/j.snb.2013.05.090
  31. F. Shao, M.W.G. Hoffmann, J.D. Prades, R. Zamani, J. Arbiol, J.R. Morante, E. Varechkina, M. Rumyantseva, A. Gaskov, I. Giebelhaus, T. Fischer, S. Mathur, F. Hernandez-Ramirez, Sen. Actuators B, 2013, 181, 130-135. https://doi.org/10.1016/j.snb.2013.01.067
  32. D. Bekermann, A. Gasparotto, D. Barreca, C. Maccato, E. Comini, C. Sada, G. Sberveglieri, G.Devi, R.A. Fischer, ACS Appl. Mater. Interfaces, 2012, 4(2), 928-934. https://doi.org/10.1021/am201591w
  33. J. Huang, Y. Dai, C. Gu, Y. Sun, J. Liu, J. Alloys Compd., 2013, 575, 115-122. https://doi.org/10.1016/j.jallcom.2013.04.094
  34. A. Alqudami, S. Annapoorni, P. Sen, R.S. Rawat, Synth Met., 2007, 157(1), 53-59. https://doi.org/10.1016/j.synthmet.2006.12.006
  35. Kh. Ghanbari, M. Moloudi, Anal. Biochem., 2016, 512, 91-102. https://doi.org/10.1016/j.ab.2016.08.014
  36. W.S.H. Jr, R.E. Offeman, J. Am. Chem. Soc., 1958, 80(6), 1339-1339. https://doi.org/10.1021/ja01539a017
  37. Kh. Ghanbari, N. Hajheidari, Anal. Biochem., 2015, 473, 53-62. https://doi.org/10.1016/j.ab.2014.12.013
  38. I.C.O, Harmonization, Topic Q2 (R1) Validation of Analytical Procedures: Text and Methodology, 2005.
  39. A. Pruna, Q. Shao, M. Kamruzzaman, Y.Y. Li, J.A. Zapien, D. Pullini, D. Busquets Mataix, A. Ruotolo, Appl. Surf. Sci., 2017, 392, 801-809. https://doi.org/10.1016/j.apsusc.2016.09.122
  40. T. Terasako, T. Yamanaka, S. Yura, M. Yagi, S. Shirakata, Thin Solid Films, 2010, 519(5), 1546-1551. https://doi.org/10.1016/j.tsf.2010.06.061
  41. W. Wang, Y. Tu, L. Wang, Y. Liang, H. Shi, Appl. Surf. Sci., 2013, 264, 399-403. https://doi.org/10.1016/j.apsusc.2012.10.033
  42. A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nded.Wiley, USA, 2000.
  43. Q. Huang, H. Zhang, S. Hu, F. Li, W. Weng, J. Chen, Q. Wang, Y. He, W. Zhang, X. Bao, Biosens. Bioelectron., 2014, 52, 277-280. https://doi.org/10.1016/j.bios.2013.09.003
  44. E. Laviron, J. Electroanal. Chem. Interfacial Electrochem. 1979, 101(1), 19-28. https://doi.org/10.1016/S0022-0728(79)80075-3
  45. R. Nicholson, I. Shain, Anal. Chem., 1964, 36(4), 706-723. https://doi.org/10.1021/ac60210a007
  46. A. Bard, L. Faulkner, Electrochemical methods, 2nd ed., John Wiley & Sons, New York, 2001.
  47. E.L. Ciolkowski, K.M. Maness, P.S. Cahlil, R.M. Wightman, Anal. Chem., 1994, 66(21), 3611-3617. https://doi.org/10.1021/ac00093a013
  48. C. Diaz, C. Garcia, P. Iturriaga-Vasquez, M.J. Aguirre, J.P. Muena, R. Contreras, R. Ormazabal-Toledo, M. Isaacs, Electrochim. Acta, 2013, 111, 846-854. https://doi.org/10.1016/j.electacta.2013.08.103
  49. C. Amatore, J.M. Saveant, J. Electroanal. Chem., 1978, 86(1), 227-232. https://doi.org/10.1016/S0022-0728(78)80371-4
  50. H. R. Zare, M.R. Shishehbore, D. Nematollahi, Electrochim. Acta, 2011, 58, 654-661. https://doi.org/10.1016/j.electacta.2011.10.016
  51. N. Lavanya, E. Fazio, F. Neri, A. Bonavita, S.G. Leonardi, G. Neri, C. Sekar, J. Electroanal. Chem., 2016, 770, 23-32. https://doi.org/10.1016/j.jelechem.2016.03.017
  52. Q. Zhu, J. Bao, D. Huo, M. Yang, H. Wu, C. Hou, Y. Zhao, X. Luo, H. Fa, J. Electroanal. Chem., 2017, 799, 459-467. https://doi.org/10.1016/j.jelechem.2017.07.004