DOI QR코드

DOI QR Code

Effect of the Concentration of Citrate on the Growth of Aqueous Chemical Bath Deposited ZnO and Application of the Film to Cu(In,Ga)Se2 Solar Cells

Citrate 농도에 따른 수용액 화학조 증착 ZnO 성장 및 ZnO 박막의 Cu(In,Ga)Se2 태양전지 응용

  • Cho, Kyung Soo (Department of Materials and Manufacturing Engineering, Hanbat National University) ;
  • Jang, Hyunjun (Department of Materials Science and Engineering, Hanbat National University) ;
  • Oh, Jae-Young (Department of Materials Science and Engineering, Hanbat National University) ;
  • Kim, Jae Woo (Department of Materials Science and Engineering, Hanbat National University) ;
  • Lee, Jun Su (Department of Materials Science and Engineering, Hanbat National University) ;
  • Choi, Yesol (Department of Materials Science and Engineering, Hanbat National University) ;
  • Hong, Ki-Ha (Department of Materials Science and Engineering, Hanbat National University) ;
  • Chung, Choong-Heui (Department of Materials and Manufacturing Engineering, Hanbat National University)
  • 조경수 (한밭대학교 공과대학 소재시스템공학과) ;
  • 장현준 (한밭대학교 공과대학 신소재공학과) ;
  • 오재영 (한밭대학교 공과대학 신소재공학과) ;
  • 김재우 (한밭대학교 공과대학 신소재공학과) ;
  • 이준수 (한밭대학교 공과대학 신소재공학과) ;
  • 최예솔 (한밭대학교 공과대학 신소재공학과) ;
  • 홍기하 (한밭대학교 공과대학 신소재공학과) ;
  • 정중희 (한밭대학교 공과대학 소재시스템공학과)
  • Received : 2020.03.13
  • Accepted : 2020.04.01
  • Published : 2020.04.27

Abstract

ZnO thin films are of considerable interest because they can be customized by various coating technologies to have high electrical conductivity and high visible light transmittance. Therefore, ZnO thin films can be applied to various optoelectronic device applications such as transparent conducting thin films, solar cells and displays. In this study, ZnO rod and thin films are fabricated using aqueous chemical bath deposition (CBD), which is a low-cost method at low temperatures, and environmentally friendly. To investigate the structural, electrical and optical properties of ZnO for the presence of citrate ion, which can significantly affect crystal form of ZnO, various amounts of the citrate ion are added to the aqueous CBD ZnO reaction bath. As a result, ZnO crystals show a nanorod form without citrate, but a continuous thin film when citrate is above a certain concentration. In addition, as the citrate concentration increases, the electrical conductivity of the ZnO thin films increases, and is almost unchanged above a certain citrate concentration. Cu(In,Ga)Se2 (CIGS) solar cell substrates are used to evaluate whether aqueous CBD ZnO thin films can be applicable to real devices. The performance of aqueous CBD ZnO thin films shows performance similar to that of a sputter-deposited ZnO:Al thin film as top transparent electrodes of CIGS solar cells.

Keywords

References

  1. M. Miyake, H. Fukui and T. Hirato, Phys. Status Solidi A, 209, 945 (2012). https://doi.org/10.1002/pssa.201127385
  2. T. Minami, T. Yamamoto and T. Miyata, Thin Solid Films, 366, 63 (2000). https://doi.org/10.1016/S0040-6090(00)00731-8
  3. Z. L. Pei, X. B. Zhang, G. P. Zhang, J. Gong, C. Sun, R. F. Huang and L. S. Wen, Thin Solid Films, 497, 20 (2006). https://doi.org/10.1016/j.tsf.2005.09.110
  4. V. Musta, B. Teixeira, E. Fortunato, R. C. C. Monteiro and P. Vilarinho, Surf. Coat. Technol., 180, 659 (2004). https://doi.org/10.1016/j.surfcoat.2003.10.112
  5. T. Minami, H. Sato, H. Nanto and S. Takata, Jpn. J. Appl. Phys., Part 2, 24, L781 (1985). https://doi.org/10.1143/JJAP.24.L781
  6. M. E. Fragala and G. Malandrino, Microelectron. J., 40, 381 (2009). https://doi.org/10.1016/j.mejo.2008.09.003
  7. A. Suzuki, T. Matsushita, N. Wada, Y. Sakamoto and M. Okuda, Jpn. J. Appl. Phys., Part 2, 35, L56 (1996). https://doi.org/10.1143/JJAP.35.L56
  8. Y. Wu, H. Yan, M. Huang, B. Messer, J. H. Song and P. Yand, Chem. Eur. J., 8, 1260 (2002). https://doi.org/10.1002/1521-3765(20020315)8:6<1260::AID-CHEM1260>3.0.CO;2-Q
  9. M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P. Yang, Adv. Mater., 13, 113 (2001). https://doi.org/10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H
  10. C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh and H. J. Lee, Appl. Phys. Lett., 81, 3648 (2002). https://doi.org/10.1063/1.1518810
  11. J. F. Guillemoles, L. Kronik, D. Chaen, U. Rau, A. Jasanek and H. W. Schock, J. Phys. Chem. B, 104, 4849 (2000). https://doi.org/10.1021/jp993143k
  12. T. Hamada, A. Ito, E. Fujii, D. Chu, K. Kato and Y. Masuda, J. Cryst. Growth, 311, 3687 (2009). https://doi.org/10.1016/j.jcrysgro.2009.06.004
  13. H. Hagendorfer, K. Lienau, S. Nishiwaki, C. M. Fella, L. Kranz, A. R. Uhl, D. Jaeger, L. Luo, C. Gretener, S. Buecheler, Y. E. Romanyuk and A. N. Tiwari, Adv. Mater., 26, 632 (2014). https://doi.org/10.1002/adma.201303186
  14. S. Lee, K. S. Cho, S. Song, K. Kim, Y. J. Eo, J. H. Yun, J. Gwak and C.H. Chung, J. Vis. Exp., 149, e59909 (2019).
  15. Z. R. Tian, J. A. Voigt, J. Liu, B. McKenzie, M. J. McDermott, M. A. Rodriguez, H. Konishi and H. F. Xu, Nat. Mater., 2, 821 (2003). https://doi.org/10.1038/nmat1014
  16. J. G. Lu, S. Fujita, T. Kawaharamura, H. Nichinaka, Y. Kamada, T. Ohshima, Z. Z. Ye, Y. J. Zemg, L. P. Zhu, H. P. He and B. H. Zhao, J. Appl. Phys., 101, 083705 (2007). https://doi.org/10.1063/1.2721374
  17. C. H. Chung, S. H. Li, B. Lei, W. Yang, W. W. Hou, B. Bob and Y. Yang, Chem. Mater., 23, 964 (2011). https://doi.org/10.1021/cm103258u
  18. C. H. Chung, B. Lei, B. Bob, S. H. Li, W. W. Hou, H. S. Duan and Y. Yang, Chem. Mater., 23, 4941 (2011). https://doi.org/10.1021/cm201827c
  19. C. H. Chung, T. B. Song, B. Bob, R. Zhu, H. S. Duan and Y. Yang, Adv. Mater., 24, 5499 (2012). https://doi.org/10.1002/adma.201201010
  20. C. H. Chung, B. Bob, B. Lei, S. H. Li, W. W. Hou and Y. Yand, Sol. Energy Mater. Sol. Cells, 113, 148 (2013). https://doi.org/10.1016/j.solmat.2013.02.018
  21. C. H. Chung, K. H. Hong, D. K. Lee, J. H. Yun and Y. Yang, Chem. Mater., 27, 7244 (2015). https://doi.org/10.1021/acs.chemmater.5b03841
  22. C. H. Chung, B. Bob, T. B. Song and Y. Yang, Sol. Energy Mater. Sol. Cells, 120, 642 (2014). https://doi.org/10.1016/j.solmat.2013.10.013
  23. J. Jang, J. S. Lee, K. H. Hong, D. K. Lee, S. Song, K. Kim, Y. J. Eo, J. H. Yun and C. H. Chung, Sol. Energy Mater. Sol. Cells, 170, 60 (2017). https://doi.org/10.1016/j.solmat.2017.05.051
  24. S. Lee. J. S. Lee, J. Jang, K. H. Hong, D. K. Lee, S. Song, K. Kin, Y. J. Eo, J. Gwak and C. H. Chung, Nano Energy, 53, 675 (2018). https://doi.org/10.1016/j.nanoen.2018.09.027
  25. S. Lee, J. Jang, K. S. Cho, Y. J. Oh, K. H. Hong, S. Song, K. Kim, Y. J. Eo, J. H. Yun, J. Gwak and C. H. Chung, Sol. Energy, 180, 519 (2019). https://doi.org/10.1016/j.solener.2019.01.059
  26. S. Lee, J. Jang, T. Park, Y. M. Park, J. S. Park, Y. K. Kim, H. K. Lee, E. C. Jeon, D. K. Lee, B. Ahn and C. H. Chung, ACS Appl. Mater. Interfaces., 12, 6169 (2020). https://doi.org/10.1021/acsami.9b17168
  27. C. H. Chung, Phys. Rev. Appl., 12, 024060 (2019). https://doi.org/10.1103/PhysRevApplied.12.024060