DOI QR코드

DOI QR Code

바나듐 탄화물 촉매를 이용한 수소생성용 암모니아 분해반응

NH3 Decomposition Reaction for Hydrogen Formation Using Vanadium Carbide Catalysts

  • 김정수 (한남대학교 화학공학과) ;
  • 최성신 (한남대학교 화학공학과) ;
  • 최정길 (한남대학교 화학공학과)
  • KIM, JUNG-SU (Department of Chemical Engineering, Hannam University) ;
  • CHOI, SEONG-SHIN (Department of Chemical Engineering, Hannam University) ;
  • CHOI, JEONG-GIL (Department of Chemical Engineering, Hannam University)
  • 투고 : 2019.12.05
  • 심사 : 2020.02.28
  • 발행 : 2020.02.28

초록

The synthesis and catalytic activities over vanadium carbides were examined for ammonia decomposition reaction to produce the hydrogen. In particular, the comparison of vanadium nitrides were made on the ammonia decomposition reaction. The experimental data exhibited that BET surface areas ranged from 5.2 ㎡/g to 25.6 ㎡/g and oxygen uptake values varied from 3.8 μmol/g to 31.3 μmol/g. It is general that vanadium carbides (VC) were observed to be superior to vanadium nitrides for ammonia decomposition reaction. The primary reason for these differences were thought to be related to the extent of electronegativity between these materials. Most of vanadium carbide crystallites were exceeded by Pt/C crystallite. We assumed that the activities for vanadium carbide crystallites (VC) were comparable to or even higher than that determined for the Pt/C crystallite.

키워드

참고문헌

  1. J. G. Choi, "Influence of surface composition on HDN activities of molybdenum nitrides", J. Ind. Eng. Chem., Vol. 8, No 1, 2002, pp. 1-11. Retrieved from https://www.cheric.org/research/tech/periodicals/view.php?seq=362649.
  2. D. J. Sajkowski and S. T. Oyama, "Symposium on the chemistry of W/Mo catalysis", Prep. Petrol. Chem. Div., 199th ACS Nat. Meeting, Vol. 35, No 2, 1990, pp. 233.
  3. N. I. Il'chenko, "Oxidative catalysis on transition-metal carbides", Kinetics and Catalysis, Vol 18, No. 1, 1977, pp. 153-163, doi: https://doi.org/10.6111/JKCGCT.2010.20.2.074.
  4. L. leclercq, K. Imura, S. Yoshida, T. Barbee, and M. Boudart, "Preparation of catalysts II", Elsevier, USA, 1978, pp. 627.
  5. L. Volpe and M. Boudart, "Ammonia synthesis on molybdenum nitrides", J. Phys. Chem., Vol. 90, 2015, pp. 4874, doi: https://doi.org/10.1021/j100411a031.
  6. R. B. Levy and M. Boudart, "Platinum-like behavior of tungsten carbide in surface catalysis", Science, Vol. 181, No. 4099, 2013, pp. 547-549, doi: https://doi.org/10.1126/science.181.4099.547.
  7. L. H. Bennett, J. R. Cuthill, A. J. McAlister, N. E. Erickson, and R. E. Watson, "Electronic structure and catalytic behavior of tungsten carbide", Science, Vol. 184, No. 4136, 2014, pp. 563-565, doi: https://doi.org/10.1126/science.184.4136.563.
  8. J. G . C hoi, J. H a, and J. W. Hong, "Synthesis and catalytic properties of vanadium interstitial compounds", Applied Catalysis, Vol. 168, No. 1, 1998, pp. 47-56, doi: https://doi.org/10.1016/S0926-860X(97)00332-3.
  9. J. H. Sinfelt and D. J. C. Yates, "Effect of carbiding on the hydrogenolysis activity of molybdenum", Nature Phys. Sci., Vol. 229, 1971, pp. 27-28, doi: https://doi.org/10.1038/physci229027b0.
  10. P. A. Armstrong, A. T. Bell, and J. A. Reimer, "Comparison of the dynamics and orientation of chemisorbed benzene and pyridine on molybdenum nitride (.gamma.-Mo2N)", J. Phys. Chem., Vol. 97, No. 9, 2013, pp. 1952-1960, doi:https://doi.org/10.1021/j100111a037.
  11. L. E. Toth, "Transition metal carbides and nitrides", Academic Press, USA, 1971, pp. 234.
  12. J. B. Claridge, A. P. E. York, A. J. Brungs, and M. L. H. Green, "Study of the temperature-programmed reaction synthesis of early transition metal carbide and nitride catalyst materials from oxide precursors", Chem. Mater., Vol. 12, No. 1, 2000, pp. 132-142, doi: https://doi.org/10.1021/cm9911060.
  13. J. G. Choi, "Ammonia decomposition over titanium carbides", J. Korean Crystal Growth and Crystal Technology, Vol. 22, No. 6, 2012, pp. 269-273, doi:https://doi.org/10.6111/JKCGCT.2012.22.6.269.
  14. J. G. Choi, "Preparation and characterization over niobium carbide crystallites", J. Korean Crystal Growth and Crystal Technology, Vol. 19, No. 3, 2009, pp. 125-129. Retrieved from http://www.koreascience.or.kr/article/JAKO200922951806937.page.
  15. J. Yu, X. Gao, G. Chen, and X. Yuan, "Electrocatalytic performance of commercial vanadium carbide for oxygen reduction reaction", Int. J. Hydrogen Energy, Vol. 41, No. 7. 2016, pp. 4150-4158, doi: https://doi.org/10.1016/j.ijhydene.2016.01.008.
  16. W. Fu, Y. Wang, H. Zhang, M. He, L. Fang, X. Yang, Z. Huang, J. Li, X. Gu, and Y. Wang, "Epitaxial growth of graphene on V8C7 nanomeshs for highly efficient and stable hydrogen evolution reaction", J. Catal., Vol. 369, 2019, pp. 47-53, doi: https://doi.org/10.1016/j.jcat.2018.10.033.
  17. L. Peng, J. Shen, L. Zhang, Y. Wang, R. Xiang, J. Li, L. Li, and Z. Wei, "Graphitized carbon-coated vanadium carbide nanoboscages modified by nickel with enhanced electrocatalytic activity for hydrogen evolution in both acid and alkaline solutions", J. Mater. Chem. A Mater., Vol. 44, 2017, pp. 23028-23034, doi: https://doi.org/10.1039/C7TA07275A.