DOI QR코드

DOI QR Code

Raney Ni-Zn-Fe 전극의 산소발생 반응 특성에 미치는 도금변수의 영향

Effect of Electroplating Parameters on Oxygen Evolution Reaction Characteristics of Raney Ni-Zn-Fe Electrode

  • 투고 : 2019.12.18
  • 심사 : 2020.02.28
  • 발행 : 2020.02.28

초록

The intermittent characteristics of renewable energy complicates the process of balancing supply with demand. Electrolysis technology can provide flexibility to grid management by converting electricity to hydrogen. Alkaline electrolysis has been recognized as established technology and utilized in industry for over 100 years. However, high overpotential of oxygen evolution reaction in alkaline water electrolysis reduces the overall efficiency and therefore requires the development of anode catalyst. In this study, Raney Ni-Zn-Fe electrode was prepared by electroplating and the electrode characteristics was studied by varying electroplating parameters like electrodeposition time, current density and substrate. The prepared Raney Ni-Zn-Fe electrode was electrochemically evaluated using linear sweep voltammetry. Physical and chemical analysis were conducted by scanning electron microscope, energy dispersive spectrometer, and X-ray diffraction. The plating time did not changed the morphology and composition of the electrode surface and showed a little effect on overpotential reduction. As the plating current density increased, Fe content on the surface increased and cauliflower-like structure appeared on the electrode surface. In particular, the overpotential of the electrode, which was prepared at the plating current density of 320 mA/㎠, has showed the lowest value of 268 mV at 50 mA/㎠. There was no distinguishable overpotential difference between the type of substrate for the electrodes prepared at 80 mA/㎠.

키워드

참고문헌

  1. A. Schavan, "Germany's energy research plan", Science, Vol. 330, No. 6002, 2010, pp. 295, doi: https://doi.org/10.1126/science.1198075.
  2. P. Milan, M. Wächter, and J. Peinke, "Turbulent character of wind energy", Phys. Rev. Lett., Vol. 110, 2013, pp. 138701, doi: https://doi.org/10.1103/PhysRevLett.110.138701.
  3. A. Woyte, R. Belmans, and J. Nijs, "Fluctuations in instantaneous clearness index: analysis and statistics", Solar Energy, Vol. 81, No. 2, 2007, pp. 195-206, doi:https://doi.org/10.1016/j.solener.2006.03.001.
  4. L. Bi, S. Boulfrad, and E. Traversa, "Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides", Chem. Soc. Rev., Vol. 43, No. 24, 2014, pp. 8255-8270, doi: https://doi.org/10.1039/C4CS00194J.
  5. M. Wang, Z. Wang, X. Gong, and Z. Guo, "The intensification technologies to water electrolysis for hydrogen production - a review", Renewable and Sustainable Energy Reviews, Vol. 29, 2014, pp.573-588, doi: https://doi.org/10.1016/j.rser.2013.08.090.
  6. K. Zeng and D. Zhang, "Recent progress in alkaline water electrolysis for hydrogen production and applications", Prog. Energy Combust. Sci., Vol. 36, No. 3, 2010, pp. 307-326, doi: https://doi.org/10.1016/j.pecs.2009.11.002.
  7. D. M. F. Santos, C. A. C. Sequeira, and J. L. Figueiredo, "Hydrogen production by alkaline water electrolysis", Quim. Nova, Vol. 36, No. 8, 2013, pp. 1176-1193, doi:http://dx.doi.org/10.1590/S0100-40422013000800017.
  8. O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson, and S. Few, "Future cost and performance of water electrolysis: an expert elicitation study", Int. J. Hydrogen Energy, Vol. 42, No. 52, 2017, pp. 30470-30492, doi:https://doi.org/10.1016/j.ijhydene.2017.10.045.
  9. M. Gong and H. Dai, "A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts", Nano Res., Vol. 8, No. 1, 2015, pp. 23-39, doi: https://doi.org/10.1007/s12274-014-0591-z.
  10. B. S. Yeo and A. T. Bell, "Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen", J. Am. Chem. Soc., Vol. 133, No. 14, 2011, pp. 5587-5593, doi: https://doi.org/10.1021/ja200559j.
  11. V. Vij, S. Sultan, A. M. Harzandi, A. Meena, J. N. Tiwari, W. G. Lee, T. Yoon, and K. S. Kim, "Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions", ACS Catal., Vol. 7, No. 10, 2017, pp. 7196-7225, doi:https://doi.org/10.1021/acscatal.7b01800.
  12. S. M. Fernandez-Valverde, E. Ordonez-Regil, G. Cabanas-Moreno, and O. Solorza-Feria, "Electrochemical behavior of Ni-Mo electrocatalyst for water electrolysis", J. Mex. Chem. Soc., Vol. 54, No. 3, 2010, pp. 169-174, doi:https://doi.org/10.29356/jmcs.v54i3.931.
  13. J. Kubisztal and A. Budniok, "Study of the oxygen evolution reaction on nickel-based composite coatings in alkaline media", Int. J. Hydrogen Energy, Vol. 33, No. 17, 2008, pp. 4488-4494, doi: https://doi.org/10.1016/j.ijhydene.2008.06.023.
  14. D. A. Corrigan and R. M. Bendert, "Effect of coprecipitated metal ions on the electrochemistry of nickel hydroxide thin films: cyclic voltammetry in 1M KOH", J. Electrochem. Soc., Vol. 136, No. 3, 1989, pp. 723-728, doi: https://doi.org/10.1149/1.2096717.
  15. B. K. Kim, S. K. Kim, S. K. Cho, and J. J. Kim, "Enhanced catalytic activity of electrodeposited Ni-Cu-P toward oxygen evolution reaction", Appl. Catal. B, Vol. 237, 2018, pp. 409-415, doi: https://doi.org/10.1016/j.apcatb.2018.05.082.
  16. X. Li, F. C. Walsh, and D. Pletcher, "Nickel based electrocatalysts for oxygen evolution in high current density, alkaline water electrolysers", Phys. Chem. Chem. Phys., Vol. 13, No. 3, 2011, pp. 1162-1167, doi: https://doi.org/10.1039/c0cp00993h.
  17. M. S. Burke, L. J. Enman, A. S. Batchellor, S. Zou, and S. W. Boettcher, "Oxygen evolution reaction electrocatalysis on transition metal oxides and (Oxy)hydroxides: activity trends and design principles", Chem. Mater., Vol. 27, No. 22, 2015, pp. 7549-7558, doi: https://doi.org/10.1021/acs.chemmater.5b03148.
  18. B. Zeifert, J. S. Blasquez, J. G. C. Moreno, and H. A. Calderon, "Raney-Nickel catalysts produced by mechanicl alloying", Rev.Adv.Mater.Sci., Vol. 18, 2008, pp. 632-638. Retrieved from https://www.researchgate.net/profile/Jose_Cabanas-Moreno/publication/267301499_Raney-nickel_catalysts_produced_by_mechanical_alloying/links/545454a40cf26d5090a55b16.pdf.
  19. E. Endoh, H. Otouma, T. Morimoto, and Y. Oda, "New Raney nickel composite-coated electrode for hydrogen evolution", Int. J. Hydrogen Energy, Vol. 12, No. 7, 1987, pp. 473-479, doi: https://doi.org/10.1016/0360-3199(87)90044-9.
  20. G. Sheela, M. Pushpavanam, and S. Pushpavanam, "Zinc-nickel alloy electrodeposits for water electrolysis", Int. J. Hydrogen Energy, Vol. 27, No. 6, 2002, pp. 627-633, doi:https://doi.org/10.1016/s0360-3199(01)00170-7.
  21. R. Phillips and C. W. Dunnill, "Zero gap alkaline electrolysis cell design for renewable energy storage as hydrogen gas", RSC Advances, Vol. 6, No. 102, 2016, pp. 100643-100651, doi: https://doi.org/10.1039/c6ra22242k.
  22. R. K. Shervedani and A. Lasia, "Evaluation of the surface roughness of microporous Ni-Zn-P electrodes by in situ methods", J. Appl. Electrochem., Vol. 29, No. 8, 1999, pp. 979-986, doi: https://doi.org/10.1023/a:1003577631897.
  23. M. Lukaszewski, M. Soszko, and A. Czerwinski, "Electrochem ical m ethods of real surface area determination of noble metal electrodes - an overview", Int. J. Electrochem. Sci., Vol. 11, 2016, pp. 4442-4469, doi:https://doi.org/10.20964/2016.06.71.
  24. A. T. Swesi, J. Masud, and M. Nath, "Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction", Energy & Environmental Science, Vol. 9, No. 5, 2016, pp. 1771-1782, doi: https://doi.org/10.1039/c5ee02463c.
  25. N. Todoroki and T. Wadayama, "Oxygen reduction and oxygen evolution reaction activity on Co/Pt(111) surfaces in alkaline solution", The Electrochemical Society, Vol. 86, No. 13, 2018, pp. 569-574, doi: https://doi.org/10.1149/08613.0569ecst.
  26. W. B. Han, H. S. Cho, W. C. Cho, and C. H. Kim, "Understanding the effect on hydrogen evolution reaction in alkaline medium of thickness of physical vapor deposited Al-Ni electrodes", Trans. of The Korean Hydrogen and New Energy Society, Vol. 28, No. 6, 2017, pp. 610-617, doi:https://doi.org/10.7316/KHNES.2017.28.6.610.
  27. Z. Feng, Q. Li, J. Zhang, P. Yang, and M. An, "Electrochemical behaviors and properties of Zn-Ni alloys obtained from alkaline non-cyanide bath using 5,5'-dimethylhydantoin as complexing agent", J. Electrochem. Soc., Vol. 162, No. 9, 2015, pp. 412-422, doi: https://doi.org/10.1149/2.0121509jes.
  28. J. Wang, G. D. Wilcox, R. J. Mortimer, C. Liu, and M. A. Ashworth, "Electrodeposition and characterisation of novel $Ni-NbO_x$ composite coatings as a diffusion barrier for liquid solder interconnects - part II: diffusion barrier performance", ECS Transactions, Vol. 64, No. 40, 2015, pp. 109-121, doi: https://doi.org/10.1149/06440.0109ecst.
  29. C. Srivastava, S. K. Ghosh, S. Rajak, A. K. Sahu, R. Tewari, V. Kain, and G. K. Dey, "Effect of pH on anomalous co-deposition and current efficiency during electrodeposition of Ni-Zn-P alloys", Surf. Coat. Technol., Vol. 313, 2017, pp. 8-16, doi: https://doi.org/10.1016/j.surfcoat.2017.01.043.
  30. J. H. Park, "Characterization of mechanical property of ni metal mask fabricated by electroforming with different current densities", Master thesis, Sungkyunkwan University, Seoul, Korea, 2010. Retrieved from http://m.riss.kr/search/detail/DetailView.do?p_mat_type=be54d9b8bc7cdb09&control_no=62c9dc6853edb1e9ffe0bdc3ef48d419.
  31. F. J. Perez-Alonso, C. Adan, S. Rojas, M. A. Pena, and J. L. G. Fierro, "Ni/Fe electrodes prepared by electrodeposition method over different substrates for oxygen evolution reaction in alkaline medium", Int. J. Hydrogen Energy, Vol. 39, No. 10, 2014, pp. 5204-5212, doi: https://doi.org/10.1016/j.ijhydene.2013.12.186.
  32. T. K. Lee, J. W. Kim, K. K. Bae, C. S. Park, K. S. Kang, Y. H. Kim, and S. U. Jung, "Study on oxygen evolution reaction of Ni-Zn-Fe electrode for alkaline water electrolysis", Trans. of The Korean Hydrogen and New Energy Society, Vol. 29, No. 6, 2018, pp. 549-558, doi: https://doi.org/10.7316/KHNES.2018.29.6.549.