ON WEAKLY GRADED POSETS OF ORDER-PRESERVING MAPS UNDER THE NATURAL PARTIAL ORDER

Phichet Jitjankarn

Abstract

In this paper, we simplify the natural partial ordering \preccurlyeq on the semigroup $\mathcal{O}([n])$ under composition of all order-preserving maps on $[n]=\{1, \ldots, n\}$, and describe its maximal elements. Also, we show that the poset $(\mathcal{O}([n]), \preccurlyeq)$ is weakly graded and determine when $(\mathcal{O}([n]), \preccurlyeq)$ has a structure of $(\mathbf{i}+\mathbf{1})$-avoidance.

1. Introduction

Let X be a nonempty set and $T(X)$ the semigroup under composition of all transformations from X into itself. It is well-known that $T(X)$ is a regular semigroup, i.e., $\forall \alpha \in T(X) \exists \beta \in T(X), \alpha \beta \alpha=\alpha$. In 1980, the natural partial order on regular semigroups was independently studied by Hartwig [6] and Nambooripad [13]. Using terms of images and inverse images of transformations, in 1986, Kowol and Mitsch [9] described the natural partial order \preccurlyeq on $T(X)$. Later, in 2003, Marques-Smith and Sullivan [12] extended some of previous work to the semigroup $P(X)$, consisting of all partial transformation from a subset of X into X. Additionally, $T(X)$ is a subsemigroup of $P(X)$. Since then, the natural partial order on the semigroup of transformations has been discovered for numerous subsemigroups of $P(X)$ (see $[3,14,18,19]$) for X as a nonempty set, and also $[4,15]$ for X as a vector space.

For $n \in \mathbb{N}$, let $[n]=\{1,2, \ldots, n\}$. A map $\alpha \in T([n])$ is called orderpreserving if $x \leq y$ implies $x \alpha \leq y \alpha$ for all $x, y \in[n]$. We denote by $\mathcal{O}([n])$ the subsemigroups of $T([n])$ of all order-preserving maps. This type of semigroups has been extensively studied (see $[7,8,10]$), it remains open for partial ordering. It is well-known that the identity map is the maximum element on $(T([n]), \preccurlyeq)$ but not on $(\mathcal{O}([n]), \preccurlyeq)$. In this paper, we simplify the natural partial ordering \preccurlyeq on $\mathcal{O}([n])$ and also describe the maximal elements.

The notion of $(\mathbf{i}+\mathbf{1})$-avoiding posets has been studied in many areas of combinatorics; for example, see $[1,11,16]$. Especially, the $(\mathbf{3}+\mathbf{1})$-avoiding posets

[^0]play a role in the Stanley-Stembridge conjecture in [17]. For this reason, we direct our attention to study the structure of $(\mathbf{i}+\mathbf{1})$-avoidance in some subsemigroups of $\mathcal{O}([n])$ with the natural partial order.

2. Preliminaries and notations

For a nonempty set X and $\alpha \in T(X)$, we denote $\alpha \alpha^{-1}$ as a subset of $X \times X$,

$$
\alpha \alpha^{-1}=\{(x, y) \in X \times X: \exists z \in X,(x, z),(z, y) \in \alpha\}
$$

The following results describe the characterisations of the natural partial order \preccurlyeq on $T(X)$ (see $[9,12]$).

Theorem 2.1. For $\alpha, \beta \in T(X)$, we have that $\alpha \preccurlyeq \beta$ on $T(X)$ if and only if $\operatorname{ran} \alpha \subseteq \operatorname{ran} \beta$ and $\alpha=\beta \mu$ for some idempotent $\mu \in T(X)$.

Theorem 2.2. For $\alpha, \beta \in T(X)$, we have that $\alpha \preccurlyeq \beta$ on $T(X)$ if and only if the following statements hold.
(1) $\operatorname{ran} \alpha \subseteq \operatorname{ran} \beta$.
(2) $\beta \beta^{-1} \subseteq \alpha \alpha^{-1}$.
(3) For $x \in X$ with $x \beta \in \operatorname{ran} \alpha, x \alpha=x \beta$.

Corollary 2.3. If $\alpha, \beta \in T(X)$, then $\alpha \preccurlyeq \beta$ on $T(X)$ if and only if $\operatorname{ran} \alpha \subseteq$ $\operatorname{ran} \beta$ and $(\alpha \cup \beta) \beta^{-1} \subseteq \alpha \alpha^{-1}$.

We now recall some notations which will be useful later.

- For any $m, n \in \mathbb{N}$ with $m<n$, let

$$
[m \rightarrow n]:=\{m, m+1, \ldots, n\} .
$$

- Given $\alpha=\left(\begin{array}{cccc}1 & 2 & \cdots & n \\ c_{1} & c_{2} & \cdots & c_{n}\end{array}\right) \in T([n])$, we may write $\alpha=\left\langle c_{1}, c_{2}, \ldots, c_{n}\right\rangle$.

Let $\alpha=\left\langle c_{1}, c_{2}, \ldots, c_{n}\right\rangle \in T([n])$. With non-commuting the product operator of $c_{1} c_{2} \cdots c_{n}$, denoted by $c_{1}^{t_{1}} c_{t_{1}+1}^{t_{2}} c_{t_{1}+t_{2}+1}^{t_{3}} \cdots$ when $c_{1} \neq c_{t_{1}+1}$ and $c_{t_{i}+1} \neq c_{t_{i}}$ or $c_{t_{i}+t_{i+1}+1}$ for $i>1$, so we denote

$$
\begin{equation*}
\pi_{\alpha}:=\left(t_{1}, t_{2}, t_{3}, \ldots\right) \tag{2.1}
\end{equation*}
$$

as a sequence of positive integers with respect to α. For example, consider $\alpha=\langle 1,1,1,3,1,1,4,3,4\rangle \in T([9])$. We have $\pi_{\alpha}=(3,1,2,1,1,1)$.

For $\alpha \in T([n])$, we have another way to view α and $\alpha \alpha^{-1}$ as two sets of arcs for two digraphs, namely $\Gamma_{\alpha}:=([n], \alpha)$ and $\Gamma_{\alpha \alpha^{-1}}:=\left([n], \alpha \alpha^{-1}\right)$, respectively, where $[n]$ is the set all vertices. For example, let $\alpha=\langle 1,5,1,9,5,7,9,3,5\rangle \in$ $T([9])$. The digraphs Γ_{α} and $\Gamma_{\alpha \alpha^{-1}}$ are in Fig. 1.

Let E be an $n \times n$ matrix of all ones. For two principal submatrices $E\left[X_{1}\right]$ and $E\left[X_{2}\right]$ of E, we say that $E\left[X_{1}\right]$ is embedded in $E\left[X_{2}\right]$ if $X_{1} \subseteq X_{2} \subseteq[n]$.

Let $\alpha \in T([n])$. If $\operatorname{ran} \alpha=\left\{a_{1}, \ldots, a_{t}\right\}$, we write \mathcal{A}_{α} for the symmetric matrix which is defined as follows

$$
\begin{equation*}
\mathcal{A}_{\alpha}:=a_{1} E\left[a_{1} \alpha^{-1}\right] \oplus \cdots \oplus a_{t} E\left[a_{t} \alpha^{-1}\right] \tag{2.2}
\end{equation*}
$$

Figure 1. Digraphs for α and $\alpha \alpha^{-1}$.
\mathcal{A}_{α} is called the weighted adjacency matrix of the digraph $\Gamma_{\alpha \alpha^{-1}}$.
Given distinct elements y_{1}, \ldots, y_{t} of $[n]$ and a partition $\mathcal{Y}_{1}, \ldots, \mathcal{Y}_{t}$ of $[n]$, we let $\mathcal{A}=y_{1} E\left[\mathcal{Y}_{1}\right] \oplus \cdots \oplus y_{t} E\left[\mathcal{Y}_{t}\right]$ be a weighted adjacency matrix on $[n]$ with respect to $\zeta_{\mathcal{A}}=\left(\begin{array}{llll}\mathcal{Y}_{1} & y_{2} & \cdots & y_{t} \\ y_{1} & y_{2} & \cdots & y_{t}\end{array}\right) \in T([n])$.

Example 2.4. Consider $\alpha=\langle 1,5,1,9,5,7,9,3,5\rangle, \beta=\langle 1,1,3,5,5,5,7,9,9\rangle \in$ $T([9])$. We have

$$
\begin{aligned}
\mathcal{A}_{\alpha} & =E[\{1,3\}] \oplus 3 E[\{8\}] \oplus 5 E[\{2,5,9\}] \oplus 7 E[\{6\}] \oplus 9 E[\{4,7\}] \\
& =\left(\begin{array}{ccccccccc}
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 5 & 0 & 0 & 5 & 0 & 0 & 0 & 5 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 9 & 0 & 0 & 9 & 0 & 0 \\
0 & 5 & 0 & 0 & 5 & 0 & 0 & 0 & 5 \\
0 & 0 & 0 & 0 & 0 & 7 & 0 & 0 & 0 \\
0 & 0 & 0 & 9 & 0 & 0 & 9 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 \\
0 & 5 & 0 & 0 & 5 & 0 & 0 & 0 & 5
\end{array}\right) \sim\left(\begin{array}{ccccccccc}
\left.\begin{array}{ll}
1 & 1 \\
1 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right) & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 5 & 0 & 0 & 0 \\
0 & 0 & 0 & 5 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 9 \\
0 & 0 & 9 \\
9 & 0
\end{array}\right) \\
& =E[\{1,2\}] \oplus 3 E[\{3\}] \oplus 5 E[\{4,5,6\}] \oplus 7 E[\{7\}] \oplus 9 E[\{8,9\}]=\mathcal{A}_{\beta} .
\end{aligned}
$$

Observe that if $\beta \in \mathcal{O}([n])$, then the weighted adjacency matrix with respect to β is a diagonal blocks matrix.

For convenience, given an order-preserving map on [n],

$$
\alpha=\langle\underbrace{c_{1}, \ldots, c_{1}}_{t_{1}}, \underbrace{c_{2}, \ldots, c_{2}}_{t_{2}}, \ldots, \underbrace{c_{k}, \ldots, c_{k}}_{t_{k}}\rangle
$$

with $\pi_{\alpha}=\left(t_{1}, t_{2}, \ldots, t_{k}\right)$, we write $\operatorname{diag}\left(c_{1}^{t_{1}}, c_{2}^{t_{2}}, \ldots, c_{k}^{t_{k}}\right)$ for the weighted adjacency matrix with respect to α,

$$
\mathcal{A}_{\alpha}=c_{1} E\left[\left[1 \rightarrow t_{1}\right]\right] \oplus c_{2} E\left[\left[t_{1}+1 \rightarrow t_{1}+t_{2}\right]\right] \oplus \cdots \oplus c_{k} E\left[\left[n-t_{k}+1 \rightarrow n\right]\right] .
$$

3. Partial ordering through the weighted adjacency matrices

For $\alpha \in T([n])$ with $\operatorname{ran} \alpha=\left\{a_{1}, \ldots, a_{t}\right\}$, we denote a set of $N_{a_{1}}^{\alpha}, \ldots, N_{a_{t}}^{\alpha}$ forms a partition of $\alpha \alpha^{-1}$ where $N_{a_{i}}^{\alpha}=\left\{(x, y) \mid x, y \in a_{i} \alpha^{-1}\right\}$. By viewing $\Gamma_{N_{a_{i}}^{\alpha}}:=\left(a_{i} \alpha^{-1}, N_{a_{i}}^{\alpha}\right)$ as a subdigraph of $\Gamma_{\alpha \alpha^{-1}}$, we obtain that $E\left[a_{i} \alpha^{-1}\right]$ is the adjacency matrix for $\Gamma_{N_{a_{i}}^{\alpha}}$.
Lemma 3.1. Let $\alpha, \beta \in T([n])$ with

$$
\beta \beta^{-1}=\bigcup_{v \in \operatorname{ran} \beta} N_{v}^{\beta} \quad \text { and } \quad \alpha \alpha^{-1}=\bigcup_{u \in \operatorname{ran} \alpha} N_{u}^{\alpha} .
$$

Suppose that $\alpha \preccurlyeq \beta$ on $T([n])$. Then the following statements hold.
(1) If $N_{u}^{\alpha} \cap N_{v}^{\beta} \neq \emptyset$, then $N_{u}^{\alpha} \supseteq N_{v}^{\beta}$.
(2) There is a surjective map, denoted by $\varphi_{\beta \alpha}$, which sends N_{v}^{β} to N_{u}^{α} where $N_{v}^{\beta} \subseteq N_{u}^{\alpha}$. Moreover, for $v \in \operatorname{ran} \beta$, if $v \in \operatorname{ran} \alpha$, then $\left(N_{v}^{\beta}\right) \varphi_{\beta \alpha}=N_{v}^{\alpha}$.

Proof. Suppose that $N_{u}^{\alpha} \cap N_{v}^{\beta} \neq \emptyset$. To show that $N_{u}^{\alpha} \supseteq N_{v}^{\beta}$, we let $(x, y) \in$ $N_{u}^{\alpha} \cap N_{v}^{\beta}$ and assume on the contrary that there is $(a, b) \in N_{v}^{\beta} \backslash N_{u}^{\alpha}$. By applying Theorem 2.2(3), it forces that $v \notin \operatorname{ran} \alpha$. Using Theorem 2.2(2), $(a, b) \in N_{w}^{\alpha}$ for some $w \in \operatorname{ran} \alpha, w \neq u$. Since $(x, y),(a, b) \in N_{v}^{\beta}$, it implies that $x, y, a, b \in v \beta^{-1}$. That is, $(y, a) \in \beta \beta^{-1} \subseteq \alpha \alpha^{-1}$, so $(y, a) \in N_{z}^{\alpha}$ for some $z \in \operatorname{ran} \alpha$. From $(x, y) \in N_{u}^{\alpha},(y, a) \in N_{z}^{\alpha}$ and $(a, b) \in N_{w}^{\alpha}$, we have $u=y \alpha=z=a \alpha=w$, a contradiction. Hence, (1) is proved.

For (2), let N_{u}^{α} be a class of $\alpha \alpha^{-1}$. By Theorem 2.2(1) and (3), we have $u \in \operatorname{ran} \alpha \subseteq \operatorname{ran} \beta$ and let $x \in u \beta^{-1}$, that is, $x \beta=x \alpha$. Thus $(x, x) \in N_{u}^{\beta} \cap N_{u}^{\alpha}$. From (1), this finishes the proof.

As an immediate consequence of the above lemma, we get:
Theorem 3.2. For $\alpha, \beta \in T([n])$ with
$\mathcal{A}_{\alpha}=a_{1} E\left[a_{1} \alpha^{-1}\right] \oplus \cdots \oplus a_{t} E\left[a_{t} \alpha^{-1}\right]$ and $\mathcal{A}_{\beta}=b_{1} E\left[b_{1} \beta^{-1}\right] \oplus \cdots \oplus b_{k} E\left[b_{k} \beta^{-1}\right]$ where $\operatorname{ran} \alpha=\left\{a_{1}<\cdots<a_{t}\right\}$ and $\operatorname{ran} \beta=\left\{b_{1}<\cdots<b_{k}\right\}$, we have that $\alpha \preccurlyeq \beta$ on $T([n])$ if and only if the following statements hold.
(1) For $i=1, \ldots, t, a_{i}=b_{i}$ and $E\left[b_{i} \beta^{-1}\right]$ is embedded in $E\left[a_{i} \alpha^{-1}\right]$.
(2) For $i>t$, there is $j \in\{1, \ldots, t\}$ such that $E\left[b_{i} \beta^{-1}\right]$ and $E\left[b_{j} \beta^{-1}\right]$ can be embedded in $E\left[a_{j} \alpha^{-1}\right]$.

Proof. From Corollary 2.3, we let $(x, y) \in(\alpha \cup \beta) \beta^{-1}$. Then there is $z \in[n]$ such that $(x, z) \in \alpha \cup \beta$ and $(y, z) \in \beta$. Suppose $z \in \operatorname{ran} \alpha \subseteq \operatorname{ran} \beta$, by (1). It follows that (x, y) is an arc in $\Gamma_{N_{z}^{\beta}}$. Since $E\left[z \beta^{-1}\right]$ is embedded in $E\left[z \alpha^{-1}\right]$, by (2), it implies that (x, y) is an arc in $\Gamma_{N_{z}^{\alpha}}$. Then $(x, y) \in \alpha \alpha^{-1}$. By the same process when $z \in \operatorname{ran} \beta \backslash \operatorname{ran} \alpha$, we have $(\alpha \cup \beta) \beta^{-1} \subseteq \alpha \alpha^{-1}$. Hence, $\alpha \preccurlyeq \beta$ on $T([n])$.

On the other hand, the proof can be done by applying Lemma 3.1.
Therefore, we directly obtain the following corollary.

Corollary 3.3. Let $\mathcal{A}=\bigoplus_{i=1}^{t} y_{i} E\left[\mathcal{Y}_{i}\right]$ be a wighted adjacency matrix on $[n]$. For any wighted adjacency matrix on $[n]$, namely \mathcal{B}, we have that if $\zeta_{\mathcal{A}} \preccurlyeq \zeta_{\mathcal{B}}$ on $T([n])$, then \mathcal{B} can be written in the form $\bigoplus_{i=1}^{t}\left(b_{i 1} E\left[\mathcal{K}_{i 1}\right] \oplus b_{i 2} E\left[\mathcal{K}_{i 2}\right] \oplus \cdots \oplus\right.$ $\left.b_{i k_{i}} E\left[\mathcal{K}_{i k_{i}}\right]\right)$ where
(1) each $\left\{\mathcal{K}_{i 1}, \mathcal{K}_{i 2}, \ldots, \mathcal{K}_{i k_{i}}\right\}$ forms a partition of \mathcal{Y}_{i} and
(2) $y_{1}=b_{11}, b_{12}, \ldots, b_{1 k_{1}}, \ldots, y_{t}=b_{t 1}, b_{t 2}, \ldots, b_{t k_{t}}$ are all distinct in $[n]$.

Example 3.4. Recall \mathcal{A}_{α} as in Example 2.4. We let $B_{1}=5 E[\{2,5,8,9\}], B_{2}=$ $5 E[\{2\}] \oplus 2 E[\{5,9\}], B_{3}=5 E[\{2\}] \oplus 2 E[\{5\}] \oplus 4 E[\{9\}]$, and

$$
\begin{aligned}
& \mathcal{A}_{1}=E[\{1,3\}] \oplus B_{1} \oplus 7 E[\{6\}] \oplus 9 E[\{4,7\}], \\
& \mathcal{A}_{2}=E[\{1,3\}] \oplus 3 E[\{8\}] \oplus B_{2} \oplus 7 E[\{6\}] \oplus 9 E[\{4,7\}], \\
& \mathcal{A}_{3}=E[\{1,3\}] \oplus 3 E[\{8\}] \oplus B_{3} \oplus 7 E[\{6\}] \oplus 9 E[\{4,7\}] .
\end{aligned}
$$

Then we have $\zeta_{\mathcal{A}_{1}} \preccurlyeq \alpha \preccurlyeq \zeta_{\mathcal{A}_{2}} \preccurlyeq \zeta_{\mathcal{A}_{3}}$.
To illustrate the embedding of any two principle submatrices which still satisfies the order-preserving property, we give a diagram (in Fig. 2) of all lower bounds of the map $\langle 1,1,3,4\rangle$ on $\mathcal{O}([4])$.

Figure 2. All lower bounds of $\langle 1,1,3,4\rangle$ on $\mathcal{O}([4])$.
From Corollary 3.3 and the observation in Fig. 2, the following theorem gives a characterization of the natural partial order on $\mathcal{O}([n])$.
Theorem 3.5. Let $\alpha, \beta \in \mathcal{O}([n])$ with $\mathcal{A}_{\alpha}=\operatorname{diag}\left(a_{1}^{t_{1}}, a_{2}^{t_{2}}, \ldots, a_{k}^{t_{k}}\right)$. Then $\alpha \preccurlyeq \beta$ on $\mathcal{O}([n])$ if and only if $\mathcal{A}_{\beta}=\operatorname{diag}\left(\mathcal{B}_{1}, \ldots, \mathcal{B}_{k}\right)$ where for each i,
(i) $\mathcal{B}_{i}=\operatorname{diag}\left(b_{i 1}{ }^{m_{i 1}}, b_{i 2}{ }^{m_{i 2}}, \ldots, b_{i t_{i}}{ }^{m_{i t_{i}}}\right)$,
(ii) $m_{i 1}+m_{i 2}+\cdots+m_{i t_{i}}=t_{i}$,
(iii) $b_{11}<b_{12}<\cdots<b_{1 t_{1}}<\cdots<b_{k 1}<b_{k 2}<\cdots<b_{k t_{k}} \in[n]$, and
(iv) $a_{i} \in\left\{b_{i 1}, b_{i 2}, \ldots, b_{i t_{i}}\right\}$.

Remark 3.6. All constant maps are minimal on $(\mathcal{O}([n]), \preccurlyeq)$. The identity map is the maximum element on $(T([n]), \preccurlyeq)$ but not on $(\mathcal{O}([n]), \preccurlyeq)$.

To describe the maximal element of $\mathcal{O}([n])$, we prove the following proposition.

Proposition 3.7. Let $\alpha \in \mathcal{O}([n])$ with $\mathcal{A}_{\alpha}=\operatorname{diag}\left(a_{1}^{t_{1}}, a_{2}^{t_{2}}, \ldots, a_{k}^{t_{k}}\right)$. Then α is not maximal on $\mathcal{O}([n])$ if and only if one of the following statements holds.
(1) $t_{i}>1$ and $a_{i+1}-a_{i-1}>2$ for $i \in\{2, \ldots, k-1\}$.
(2) $t_{1}>1$ and $a_{2}-1>1$.
(3) $t_{k}>1$ and $n-a_{k-1}>1$.

Proof. Suppose (1) holds. Let $1<i<k$ be such that $t_{i}>1$ and $a_{i+1}-a_{i-1}>2$. Then there is $c_{i} \in[n]$, either $c_{i} \in\left[a_{i} \rightarrow a_{i+1}\right]$ or $c_{i} \in\left[a_{i-1} \rightarrow a_{i}\right]$. Without loss of generality, we assume $a_{i}<c_{i}<a_{i+1}$. Define

$$
\mathcal{A}=\operatorname{diag}\left(a_{1}^{t_{1}}, a_{2}^{t_{2}}, \ldots, a_{i}^{t_{i}^{\prime}}, c_{i}^{t_{i}^{\prime \prime}}, a_{i+1}^{t_{i+1}}, \ldots, a_{k}^{t_{k}}\right)
$$

where $t_{i}^{\prime}, t_{i}^{\prime \prime}>0$ and $t_{i}^{\prime}+t_{i}^{\prime \prime}=t_{i}$. By Theorem 3.5, we have $\alpha \preccurlyeq \zeta_{\mathcal{A}}$ on $\mathcal{O}([n])$. By using a similar technique, α is not maximal on $\mathcal{O}([n])$ if (2) or (3) holds.

Conversely, assume that α is not maximal on $\mathcal{O}([n])$. We directly obtain the result from the conditions of Theorem 3.5.

Observe that the map $\langle 1,1,3,4\rangle$ satisfies the condition 2 in Proposition 3.7. Then $\langle 1,1,3,4\rangle$ is not maximal on $\mathcal{O}([4])$.

Remark 3.8. Let \mathfrak{S} be the set of all finite sequences of positive integers. We define a partial order \unlhd on \mathfrak{S} as follows:

For any $\mathfrak{a}, \mathfrak{b} \in \mathfrak{S}$ with $\mathfrak{a}=\left(a_{1}, \ldots, a_{m}\right)$ and $\mathfrak{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$,

$$
\begin{aligned}
& \mathfrak{a} \unlhd \mathfrak{b} \quad \Leftrightarrow \quad \exists \text { a strictly increasing function } \theta:[m] \rightarrow[n] \text { such that } \\
& a_{1}=b_{1}+\cdots+b_{(1) \theta} \text { and } \\
& a_{i}=b_{(i-1) \theta+1}+\cdots+b_{(i) \theta} \text { for all } i \geq 2,
\end{aligned}
$$

then we call \unlhd the block partitions order on \mathfrak{S}.
Using Theorem 3.5 and the poset (\mathfrak{S}, \unlhd), it gives us some necessary conditions when two transformations are being compared.
Corollary 3.9. If $\alpha \preccurlyeq \beta$ on $\mathcal{O}([n])$, then $\operatorname{ran} \alpha \subseteq \operatorname{ran} \beta$ and $\pi_{\alpha} \unlhd \pi_{\beta}$ on \mathfrak{S}.
The converse does not hold. For example, $\alpha=\langle 4,4,4,5,5\rangle$ and $\beta=$ $\langle 1,1,1,4,5\rangle$ are incomparable under \preccurlyeq on $\mathcal{O}([4])$ but $\pi_{\alpha}=(3,2) \unlhd(3,1,1)=\pi_{\beta}$ on \mathfrak{S}.

In next section, the poset (\mathfrak{S}, \unlhd) is a useful tool to understand the structure of the poset $(\mathcal{O}([n]), \preccurlyeq)$.

4. Graded posets

Given any poset (P, \leq) and for $x, y \in P, x$ is said to be covered by y if $x<y$ and there is no $z \in P$ such that $x<z<y$ and we let $C_{P}(y)$ stands for the set of all elements in P which is covered by y.

The length of a finite chain C, denoted $l(C)$, is $|C|-1$. The rank of a finite poset P is defined to be the maximum length of chains of P. The poset P is weakly graded if there exists a rank function rk : P $\rightarrow \mathbb{N}_{0}$ such that (i) $(x) \mathrm{rk}=0$ if x is minimal in P, and (ii) $(x) \mathrm{rk}=(y) \mathrm{rk}-1$ if $x \in C_{P}(y)$. A weakly poset P is called strongly graded if every maximal chain of P has the same length.

A subposet Q of a poset P is called a copy of $(\mathbf{i}+\mathbf{j})$ if Q is isomorphic to the disjoint union of two chains of length $i-1$ and $j-1$. If P contains no copy of $(\mathbf{i}+\mathbf{j})$, we say that P is $(\mathbf{i}+\mathbf{j})$-avoiding.

Remark 4.1. For $n \in \mathbb{N}$, the partitions of n, denoted by P_{n}, is the subset of \mathfrak{S} which contains all nonincreasing sequence. Under the dominance order \ll (or majorization order) on P_{n} in the sense that

$$
a_{1}+a_{2}+\cdots+a_{k} \leq b_{1}+b_{2}+\cdots+b_{k} \text { for all } k
$$

we observe that $(2,2,1) \ll(3,1,1)$ on $\left(P_{5}, \ll\right)$ whereas $(2,2,1)$ and $(3,1,1)$ are incomparable on (\mathfrak{S}, \unlhd). It was shown in $[2,5]$, that $\left(P_{n}, \ll\right)$ is not weakly graded when $n \geq 7$.

(B) $\operatorname{On}\left(P_{7}, \unlhd\right)$
(A) $\operatorname{On}\left(P_{7}, \ll\right)$

Figure 3. $\left(P_{7}, \ll\right)$ is not weakly graded and $\left(P_{7}, \unlhd\right)$ is strongly graded.

For $n \in \mathbb{N}$, we denote

$$
\mathfrak{P}_{n}=\left\{\mathfrak{a}=\left(a_{1}, \ldots\right) \in \mathfrak{S}: \sum \mathfrak{a}=a_{1}+\cdots=n\right\}
$$

Note that each $\mathfrak{a} \in \mathfrak{P}_{n}$ can be viewed as an equivalence class of $\alpha \in \mathcal{O}([n])$, given by $\pi_{\alpha}=\mathfrak{a}$. To study the poset $(\mathcal{O}([n]), \preccurlyeq)$, we first show that $\left(\mathfrak{P}_{n}, \unlhd\right)$ is strongly graded. The following lemma is needed.

Lemma 4.2. For $\mathfrak{a}=\left(a_{1}, a_{2}, \ldots, a_{m}\right) \in(\mathfrak{S}, \unlhd)$, suppose that \mathfrak{a} is not minimal. Then for any $\mathfrak{b} \in C_{\mathfrak{S}}(\mathfrak{a})$, there exists $j \in \mathbb{N}$ such that $a_{j}, a_{j+1} \neq 0$ and $\mathfrak{b}=$ $\left(a_{1}, \ldots, a_{j-1}, a_{j}+a_{j+1}, a_{j+2}, \ldots\right)$.

Proof. Let $\mathfrak{a}=\left(a_{1}, a_{2}, \ldots, a_{m}\right), \mathfrak{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \mathfrak{S}$. Suppose \mathfrak{a} is not minimal and $\mathfrak{b} \unlhd \mathfrak{a}$. Then there is $\theta:[n] \rightarrow[m]$ a strictly increasing function such that $b_{1}=a_{1}+\cdots+a_{(1) \theta}$ and $b_{i}=a_{(i-1) \theta+1}+\cdots+a_{(i) \theta}$ for $i>1$. Assume that $\mathfrak{b} \neq \mathfrak{a}$. We have θ is not the identity function. Suppose there are $1<j_{1}<j_{2} \in \mathbb{N}$ such that $\left(j_{1}\right) \theta-\left(j_{1}-1\right) \theta \geq 2$ and $\left(j_{2}\right) \theta-\left(j_{2}-1\right) \theta \geq 2$. It follows that $b_{j_{1}}=a_{\left(j_{1}-1\right) \theta+1}+\cdots+a_{\left(j_{1}\right) \theta}$ and $b_{j_{2}}=a_{\left(j_{2}-1\right) \theta+1}+\cdots+$ $a_{\left(j_{2}\right) \theta}$. Let $\mathfrak{c}=\left(b_{1}, \ldots, b_{j_{1}-1}, b_{j_{1}}-a_{\left(j_{1}\right) \theta}, a_{\left(j_{1}\right) \theta}, b_{j_{1}+1}, \ldots, b_{j_{2}}, \ldots\right) \neq \mathfrak{b}$. It is clear that $\mathfrak{b} \unlhd \mathfrak{c} \unlhd \mathfrak{a}$ with $\mathfrak{c} \neq \mathfrak{a}$. These imply that $\mathfrak{b} \notin C_{\mathfrak{S}}(\mathfrak{a})$. Next, if $\mathfrak{b}=\left(a_{1}, \ldots, a_{j-1}, a_{j}+a_{j+1}+a_{j+2}+\cdots+a_{j+k}, a_{j+k+1}, \ldots\right)$ for $k \geq 2$, then $\mathfrak{b} \unlhd\left(a_{1}, \ldots, a_{j-1}, a_{j}+a_{j+1}, a_{j+2}, a_{j+3}, \ldots\right) \unlhd \mathfrak{a}$, that is, $\mathfrak{b} \notin C_{\mathfrak{S}}(\mathfrak{a})$. Hence, the lemma is proved.

Theorem 4.3. For $n \in \mathbb{N}$, the posets $\left(\mathfrak{P}_{n}, \unlhd\right)$ and $\left(P_{n}, \unlhd\right)$ are strongly graded of rank $n-1$.

Proof. Define rk : $\mathfrak{P}_{n} \rightarrow \mathbb{N}_{0}$ by (\mathfrak{a})rk $=k-1$ where $\mathfrak{a}=\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in \mathfrak{P}_{n}$. By applying Lemma 4.2, rk is the rank function.

The following proposition is directly obtained from Theorem 3.5 and Lemma 4.2.

Proposition 4.4. For $\beta \in \mathcal{O}([n])$ with $\mathcal{A}_{\beta}=\operatorname{diag}\left(b_{1}^{t_{1}}, b_{2}^{t_{2}}, \ldots, b_{k}^{t_{k}}\right)$, if $\alpha \in$ $\mathcal{O}([n])$ and α is covered by β, then $\exists j \in\{1, \ldots, k-1\}$ such that

$$
\mathcal{A}_{\alpha}=\operatorname{diag}\left(b_{1}^{t_{1}}, b_{2}^{t_{2}}, \ldots,\left(b_{j} * b_{j+1}\right)^{t_{j}+t_{j+1}}, b_{j+2}^{t_{j+2}}, \ldots, b_{k}^{t_{k}}\right)
$$

where $b_{j} * b_{j+1}$ is either b_{j} or b_{j+1}.
Proposition 4.5. For $0<k<n$, the poset $(\mathcal{O}([n]), \preccurlyeq)$ has a maximal chain C with $l(C)=k$.

Proof. Suppose that $n>2$. For $i \in\{1, \ldots, n-2\}$, we let $\mathfrak{a}_{i}=(n-i, \underbrace{1, \ldots, 1}_{i \text { copies }}) \in$
\mathfrak{P}_{n}. Define an order-preserving map ω_{i} on $[n]$ which $\pi_{\omega_{i}}=\mathfrak{a}_{i}$ by

$$
\omega_{i}=\langle\underbrace{1, \ldots, 1}_{n-i \text { copies }}, 2,2+1, \ldots, 2+(i-1)\rangle \text {. }
$$

We observe that $\mathcal{A}_{\omega_{i}}=\operatorname{diag}\left(1^{n-i}, 2,2+1, \ldots, 2+(i-1)\right)$. By using Proposition 3.7, it follows that ω_{i} is a maximal element on $(\mathcal{O}([n]), \preccurlyeq)$. Applying Proposition 4.4, the length of all maximal chains having ω_{i} as the maximum element is i.

As a consequence of Proposition 4.5, we have the following result.
Theorem 4.6. For $n \in \mathbb{N}$ with $n>2$, the poset $(\mathcal{O}([n]), \preccurlyeq)$ is weakly graded but not strongly graded.

Remark 4.7. It was shown in [8] that the cardinality of $\mathcal{E}(\mathcal{O}([n]))$, the set of all idempotents of $\mathcal{O}([n])$, is $F_{2 n}$ (the alternate Fibonacci number given by $F_{1}=F_{2}=1$). In Fig. 4, we list all elements of $\mathcal{E}(\mathcal{O}([5]))$ and exhibit some maximal chains of length 4 in $\mathcal{E}(\mathcal{O}([5]))$ such as $\langle 1,1,1,1,1\rangle \preccurlyeq\langle 1,3,3,3,3\rangle \preccurlyeq$ $\langle 1,3,3,3,5\rangle \preccurlyeq\langle 1,3,3,4,5\rangle \preccurlyeq\langle 1,2,3,4,5\rangle$.

Figure 4. All idempotent elements of $\mathcal{O}([5])$.

Proposition 4.8. For $n \in \mathbb{N}$, the following statements hold.
(1) The poset $\mathcal{E}(\mathcal{O}([n]))$ is strongly graded of rank $n-1$.
(2) The number of all maximal chains of $\mathcal{E}(\mathcal{O}([n]))$ is $2^{n-1}(n-1)$!.

Proof. For (1), it follows from Proposition 4.4. Next, we let $\beta \in \mathcal{E}(\mathcal{O}([n]))$ with $\mathcal{A}_{\beta}=\operatorname{diag}\left(b_{1}^{t_{1}}, b_{2}^{t_{2}}, \ldots, b_{k}^{t_{k}}\right)$. Since $\beta=\beta^{2}$, we have that $b_{1} \in\left[1 \rightarrow t_{1}\right]$, $b_{k} \in\left[n-t_{k}+1 \rightarrow n\right]$ and each $0<l<k, b_{l} \in\left[\sum_{i=1}^{l} t_{i}+1 \rightarrow \sum_{i=1}^{l} t_{i}+t_{l+1}\right]$. Using Proposition 4.4 and applying the diagram in Fig. 4, we obtain that $\left|C_{\mathcal{E}(\mathcal{O}([n]))}(\beta)\right|=2(k-1)$. As the identity map is the maximum element on $\mathcal{E}(\mathcal{O}([n]))$, it follows that there are $2(n-1) \cdot 2(n-2) \cdot 2(n-3) \cdots 2(n-(n-1))$ chains of $\mathcal{E}(\mathcal{O}([n]))$ having length $n-1$.

Proposition 4.9. For $i \geq 3$, the poset $(\mathcal{O}([n]), \preccurlyeq)$ is weakly graded $(\mathbf{i}+\mathbf{1})$ avoiding if $n<i$.
Proof. As in the proof of Proposition 4.5, we consider a maximal element $\omega_{1}=\langle\underbrace{1, \ldots, 1}_{n-1 \text { copies }}, 2\rangle$. Next, we choose a chain C of $\mathcal{E}(\mathcal{O}([n]))$ with $l(C)=$ $n-1$ and $\min (C)=\langle 3, \ldots, 3\rangle$. Since the set of all lower bounds of ω_{1} is
$\{\langle 1, \ldots, 1\rangle,\langle 2, \ldots, 2\rangle\}$, it follows that $(\mathcal{O}([n]), \preccurlyeq)$ is not an $(\mathbf{n}+\mathbf{1})$-avoiding poset.
Remark 4.10. A map $\alpha \in T([n])$ is called regressive if $x \alpha \leq x$ for all $x \in[n]$. We denote $\mathcal{R}([n])$ the subsemigroup of $T([n])$ of all regressive maps. In [10], Laradji and Umar proved that the cardinality of the semigroup $\mathcal{O}([n]) \cap \mathcal{R}([n])$, denoted by $\mathcal{C}([n])$, is $\frac{1}{n+1}\binom{2 n}{n}$.

Figure 5. The poset $(\mathcal{C}([4]), \preccurlyeq)$ is $(\mathbf{4}+\mathbf{1})$-avoiding and the poset $(\mathcal{R}([3]), \preccurlyeq)$ is $(\mathbf{3}+\mathbf{1})$-avoiding.

Under the natural partial ordering \preccurlyeq, the constant map $\langle 1, \ldots, 1\rangle$ is the minimum element on $\mathcal{C}([n])$ and $\mathcal{R}([n])$. Then the following proposition is clear.
Proposition 4.11. The following statements hold.
(1) The poset $(\mathcal{C}([n]), \preccurlyeq)$ is $(\mathbf{n}+\mathbf{1})$-avoiding.
(2) The poset $(\mathcal{R}([n]), \preccurlyeq)$ is $(\mathbf{n}+\mathbf{1})$-avoiding.

Remark 4.12. For $\alpha \in \mathcal{O}([n])$, let $\mathcal{O}_{n}(\mathbf{i}+\alpha)$ be the collections of copies $(\mathbf{i}+\mathbf{1})$ in $\mathcal{O}([n])$ which α is incomparable to all members of a chain of length $i-1$. Note that we define $\mathcal{R}_{n}(\mathbf{i}+\alpha)$ and $\mathcal{C}_{n}(\mathbf{i}+\alpha)$ in a similar way. We observe that

1. $\left|\mathcal{O}_{3}(\mathbf{3}+\langle 2,3,3\rangle)\right|=3,\left|\mathcal{O}_{3}(\mathbf{2}+\langle 2,3,3\rangle)\right|=9$.
2. $\left|\mathcal{R}_{3}(\mathbf{3}+\langle 1,1,2\rangle)\right|=0,\left|\mathcal{R}_{3}(\mathbf{2}+\langle 1,1,2\rangle)\right|=2$.
3. $\left|\mathcal{C}_{4}(\mathbf{4}+\langle 1,1,1,2\rangle)\right|=0,\left|\mathcal{C}_{4}(\mathbf{3}+\langle 1,1,1,2\rangle)\right|=6,\left|\mathcal{C}_{4}(\mathbf{2}+\langle 1,1,1,2\rangle)\right|=18$.

Question. What is a formula for $\left|\mathcal{S}_{n}(\mathbf{i}+\alpha)\right|$ when α is maximal in $\mathcal{S}([n])$, where \mathcal{S} is \mathcal{O}, \mathcal{R}, or \mathcal{C} ?

Acknowledgement This research has been financially supported by Walailak University, Thailand (Grant no. WU61114).

References

[1] M. D. Atkinson, B. E. Sagan, and V. Vatter, Counting $(3+1)$-avoiding permutations, European J. Combin. 33 (2012), no. 1, 49-61. https://doi.org/10.1016/j.ejc. 2011. 06.006
[2] T. Brylawski, The lattice of integer partitions, Discrete Math. 6 (1973), 201-219. https: //doi.org/10.1016/0012-365X(73)90094-0
[3] S. Chaopraknoi, T. Phongpattanacharoen, and P. Rawiwan, The natural partial order on some transformation semigroups, Bull. Aust. Math. Soc. 89 (2014), no. 2, 279-292. https://doi.org/10.1017/S0004972713000580
[4] , The natural partial order on linear semigroups with nullity and co-rank bounded below, Bull. Aust. Math. Soc. 91 (2015), no. 1, 104-115. https://doi.org/10.1017/ S0004972714000793
[5] C. Greene and D. J. Kleitman, Longest chains in the lattice of integer partitions ordered by majorization, European J. Combin. 7 (1986), no. 1, 1-10. https://doi.org/10.1016/ S0195-6698(86)80013-0
[6] R. E. Hartwig, How to partially order regular elements, Math. Japon. 25 (1980), no. 1, 1-13.
[7] P. M. Higgins, Combinatorial results for semigroups of order-preserving mappings, Math. Proc. Cambridge Philos. Soc. 113 (1993), no. 2, 281-296. https://doi.org/ 10.1017/S0305004100075964
[8] J. M. Howie, Products of idempotents in certain semigroups of transformations, Proc. Edinburgh Math. Soc. (2) 17 (1970/71), 223-236. https://doi.org/10.1017/ S0013091500026936
[9] G. Kowol and H. Mitsch, Naturally ordered transformation semigroups, Monatsh. Math. 102 (1986), no. 2, 115-138. https://doi.org/10.1007/BF01490204
[10] A. Laradji and A. Umar, Combinatorial results for semigroups of order-preserving full transformations, Semigroup Forum 72 (2006), no. 1, 51-62. https://doi.org/10.1007/ s00233-005-0553-6
[11] J. B. Lewis and Y. X. Zhang, Enumeration of graded (3+1)-avoiding posets, J. Combin. Theory Ser. A 120 (2013), no. 6, 1305-1327. https://doi.org/10.1016/j.jcta. 2013. 03.012
[12] M. P. O. Marques-Smith and R. P. Sullivan, Partial orders on transformation semigroups, Monatsh. Math. 140 (2003), no. 2, 103-118. https://doi.org/10.1007/s00605-002-0546-4
[13] K. Nambooripad, The natural partial order for semigroups, Proc. Edinb. Math. Soc. 23 (1980), no. 2, 249-260.
[14] K. Sangkhanan and J. Sanwong, Partial orders on semigroups of partial transformations with restricted range, Bull. Aust. Math. Soc. 86 (2012), no. 1, 100-118. https://doi. org/10.1017/S0004972712000020
[15] __, Green's relations and partial orders on semigroups of partial linear transformations with restricted range, Thai J. Math. 12 (2014), no. 1, 81-93.
[16] M. Skandera, A characterization of $(3+1)$-free posets, J. Combin. Theory Ser. A 93 (2001), no. 2, 231-241. https://doi.org/10.1006/jcta.2000.3075
[17] R. P. Stanley and J. R. Stembridge, On immanants of Jacobi-Trudi matrices and permutations with restricted position, J. Combin. Theory Ser. A 62 (1993), no. 2, 261-279. https://doi.org/10.1016/0097-3165(93) 90048-D
[18] L. Sun and J. Sun, A note on naturally ordered semigroups of transformations with invariant set, Bull. Aust. Math. Soc. 91 (2015), no. 2, 264-267. https://doi.org/10. 1017/S0004972714000860
[19] , A natural partial order on certain semigroups of transformations with restricted range, Semigroup Forum 92 (2016), no. 1, 135-141. https://doi.org/10.1007/s00233-014-9686-9

Phichet Jitjankarn
Division of Mathematics
Walailak University
Nakhon Si Thammarat 80161, Thailand
Email address: jitjankarn@gmail.com

[^0]: Received February 16, 2019; Accepted July 5, 2019.
 2010 Mathematics Subject Classification. Primary 20M20, 06A06.
 Key words and phrases. Transformation semigroup, partial order, (3+1)-avoidance.
 This work was financially supported by WU61114.

