Commun. Korean Math. Soc. **35** (2020), No. 2, pp. 347–358 https://doi.org/10.4134/CKMS.c190054 pISSN: 1225-1763 / eISSN: 2234-3024

ON WEAKLY GRADED POSETS OF ORDER-PRESERVING MAPS UNDER THE NATURAL PARTIAL ORDER

Phichet Jitjankarn

ABSTRACT. In this paper, we simplify the natural partial ordering \preccurlyeq on the semigroup $\mathcal{O}([n])$ under composition of all order-preserving maps on $[n] = \{1, \ldots, n\}$, and describe its maximal elements. Also, we show that the poset $(\mathcal{O}([n]), \preccurlyeq)$ is weakly graded and determine when $(\mathcal{O}([n]), \preccurlyeq)$ has a structure of $(\mathbf{i} + \mathbf{1})$ -avoidance.

1. Introduction

Let X be a nonempty set and T(X) the semigroup under composition of all transformations from X into itself. It is well-known that T(X) is a regular semigroup, i.e., $\forall \alpha \in T(X) \exists \beta \in T(X), \ \alpha\beta\alpha = \alpha$. In 1980, the natural partial order on regular semigroups was independently studied by Hartwig [6] and Nambooripad [13]. Using terms of images and inverse images of transformations, in 1986, Kowol and Mitsch [9] described the natural partial order \preccurlyeq on T(X). Later, in 2003, Marques-Smith and Sullivan [12] extended some of previous work to the semigroup P(X), consisting of all partial transformation from a subset of X into X. Additionally, T(X) is a subsemigroup of P(X). Since then, the natural partial order on the semigroup of transformations has been discovered for numerous subsemigroups of P(X) (see [3,14,18,19]) for X as a nonempty set, and also [4,15] for X as a vector space.

For $n \in \mathbb{N}$, let $[n] = \{1, 2, ..., n\}$. A map $\alpha \in T([n])$ is called orderpreserving if $x \leq y$ implies $x\alpha \leq y\alpha$ for all $x, y \in [n]$. We denote by $\mathcal{O}([n])$ the subsemigroups of T([n]) of all order-preserving maps. This type of semigroups has been extensively studied (see [7, 8, 10]), it remains open for partial ordering. It is well-known that the identity map is the maximum element on $(T([n]), \preccurlyeq)$ but not on $(\mathcal{O}([n]), \preccurlyeq)$. In this paper, we simplify the natural partial ordering \preccurlyeq on $\mathcal{O}([n])$ and also describe the maximal elements.

The notion of (i + 1)-avoiding posets has been studied in many areas of combinatorics; for example, see [1, 11, 16]. Especially, the (3 + 1)-avoiding posets

©2020 Korean Mathematical Society

Received February 16, 2019; Accepted July 5, 2019.

²⁰¹⁰ Mathematics Subject Classification. Primary 20M20, 06A06.

 $Key \ words \ and \ phrases.$ Transformation semigroup, partial order, (3+1)-avoidance.

This work was financially supported by WU61114.

play a role in the Stanley-Stembridge conjecture in [17]. For this reason, we direct our attention to study the structure of (i + 1)-avoidance in some subsemigroups of $\mathcal{O}([n])$ with the natural partial order.

2. Preliminaries and notations

For a nonempty set X and $\alpha \in T(X)$, we denote $\alpha \alpha^{-1}$ as a subset of $X \times X$,

 $\alpha \alpha^{-1} = \{ (x, y) \in X \times X : \exists z \in X, \ (x, z), (z, y) \in \alpha \}.$

The following results describe the characterisations of the natural partial order \preccurlyeq on T(X) (see [9, 12]).

Theorem 2.1. For $\alpha, \beta \in T(X)$, we have that $\alpha \preccurlyeq \beta$ on T(X) if and only if ran $\alpha \subseteq \operatorname{ran} \beta$ and $\alpha = \beta \mu$ for some idempotent $\mu \in T(X)$.

Theorem 2.2. For $\alpha, \beta \in T(X)$, we have that $\alpha \preccurlyeq \beta$ on T(X) if and only if the following statements hold.

- (1) $\operatorname{ran} \alpha \subseteq \operatorname{ran} \beta$.
- (2) $\beta\beta^{-1} \subseteq \alpha\alpha^{-1}$.
- (3) For $x \in X$ with $x\beta \in \operatorname{ran} \alpha$, $x\alpha = x\beta$.

Corollary 2.3. If $\alpha, \beta \in T(X)$, then $\alpha \preccurlyeq \beta$ on T(X) if and only if ran $\alpha \subseteq$ ran β and $(\alpha \cup \beta)\beta^{-1} \subseteq \alpha\alpha^{-1}$.

We now recall some notations which will be useful later.

• For any $m, n \in \mathbb{N}$ with m < n, let

$$[m \to n] := \{m, m+1, \dots, n\}$$

• Given $\alpha = \begin{pmatrix} 1 & 2 & \cdots & n \\ c_1 & c_2 & \cdots & c_n \end{pmatrix} \in T([n])$, we may write $\alpha = \langle c_1, c_2, \dots, c_n \rangle$.

Let $\alpha = \langle c_1, c_2, \ldots, c_n \rangle \in T([n])$. With non-commuting the product operator of $c_1 c_2 \cdots c_n$, denoted by $c_1^{t_1} c_{t_1+1}^{t_2} c_{t_1+t_2+1}^{t_3} \cdots$ when $c_1 \neq c_{t_1+1}$ and $c_{t_i+1} \neq c_{t_i}$ or $c_{t_i+t_{i+1}+1}$ for i > 1, so we denote

(2.1)
$$\pi_{\alpha} := (t_1, t_2, t_3, \ldots)$$

as a sequence of positive integers with respect to α . For example, consider $\alpha = \langle 1, 1, 1, 3, 1, 1, 4, 3, 4 \rangle \in T([9])$. We have $\pi_{\alpha} = (3, 1, 2, 1, 1, 1)$.

For $\alpha \in T([n])$, we have another way to view α and $\alpha \alpha^{-1}$ as two sets of *arcs* for two digraphs, namely $\Gamma_{\alpha} := ([n], \alpha)$ and $\Gamma_{\alpha\alpha^{-1}} := ([n], \alpha\alpha^{-1})$, respectively, where [n] is the set all vertices. For example, let $\alpha = \langle 1, 5, 1, 9, 5, 7, 9, 3, 5 \rangle \in T([9])$. The digraphs Γ_{α} and $\Gamma_{\alpha\alpha^{-1}}$ are in Fig. 1.

Let E be an $n \times n$ matrix of all ones. For two principal submatrices $E[X_1]$ and $E[X_2]$ of E, we say that $E[X_1]$ is *embedded* in $E[X_2]$ if $X_1 \subseteq X_2 \subseteq [n]$.

Let $\alpha \in T([n])$. If ran $\alpha = \{a_1, \ldots, a_t\}$, we write \mathcal{A}_{α} for the symmetric matrix which is defined as follows

(2.2)
$$\mathcal{A}_{\alpha} := a_1 E[a_1 \alpha^{-1}] \oplus \cdots \oplus a_t E[a_t \alpha^{-1}],$$

349

FIGURE 1. Digraphs for α and $\alpha \alpha^{-1}$.

 \mathcal{A}_{α} is called the *weighted adjacency matrix* of the digraph $\Gamma_{\alpha\alpha^{-1}}$.

Given distinct elements y_1, \ldots, y_t of [n] and a partition $\mathcal{Y}_1, \ldots, \mathcal{Y}_t$ of [n], we let $\mathcal{A} = y_1 E[\mathcal{Y}_1] \oplus \cdots \oplus y_t E[\mathcal{Y}_t]$ be a weighted adjacency matrix on [n] with respect to $\zeta_{\mathcal{A}} = \begin{pmatrix} \mathcal{Y}_1 & \mathcal{Y}_2 & \cdots & \mathcal{Y}_t \\ y_1 & y_2 & \cdots & y_t \end{pmatrix} \in T([n]).$

Example 2.4. Consider $\alpha = \langle 1, 5, 1, 9, 5, 7, 9, 3, 5 \rangle$, $\beta = \langle 1, 1, 3, 5, 5, 5, 7, 9, 9 \rangle \in T([9])$. We have

Observe that if $\beta \in \mathcal{O}([n])$, then the weighted adjacency matrix with respect to β is a diagonal blocks matrix.

For convenience, given an order-preserving map on [n],

$$\alpha = \langle \underbrace{c_1, \dots, c_1}_{t_1}, \underbrace{c_2, \dots, c_2}_{t_2}, \dots, \underbrace{c_k, \dots, c_k}_{t_k} \rangle$$

with $\pi_{\alpha} = (t_1, t_2, \ldots, t_k)$, we write $\operatorname{diag}(c_1^{t_1}, c_2^{t_2}, \ldots, c_k^{t_k})$ for the weighted adjacency matrix with respect to α ,

$$\mathcal{A}_{\alpha} = c_1 E[[1 \to t_1]] \oplus c_2 E[[t_1 + 1 \to t_1 + t_2]] \oplus \cdots \oplus c_k E[[n - t_k + 1 \to n]].$$

3. Partial ordering through the weighted adjacency matrices

For $\alpha \in T([n])$ with ran $\alpha = \{a_1, \ldots, a_t\}$, we denote a set of $N_{a_1}^{\alpha}, \ldots, N_{a_t}^{\alpha}$ forms a partition of $\alpha \alpha^{-1}$ where $N_{a_i}^{\alpha} = \{(x, y) \mid x, y \in a_i \alpha^{-1}\}$. By viewing $\Gamma_{N_{a_i}^{\alpha}} := (a_i \alpha^{-1}, N_{a_i}^{\alpha})$ as a subdigraph of $\Gamma_{\alpha \alpha^{-1}}$, we obtain that $E[a_i \alpha^{-1}]$ is the adjacency matrix for $\Gamma_{N_a^{\alpha}}$.

Lemma 3.1. Let $\alpha, \beta \in T([n])$ with

$$\beta\beta^{-1} = \bigcup_{v\in\operatorname{ran}\beta} N_v^\beta \quad and \quad \alpha\alpha^{-1} = \bigcup_{u\in\operatorname{ran}\alpha} N_u^\alpha.$$

Suppose that $\alpha \preccurlyeq \beta$ on T([n]). Then the following statements hold.

- (1) If $N_u^{\alpha} \cap N_v^{\beta} \neq \emptyset$, then $N_u^{\alpha} \supseteq N_v^{\beta}$.
- (2) There is a surjective map, denoted by $\varphi_{\beta\alpha}$, which sends N_v^{β} to N_u^{α} where $N_v^{\beta} \subseteq N_u^{\alpha}$. Moreover, for $v \in \operatorname{ran} \beta$, if $v \in \operatorname{ran} \alpha$, then $(N_v^{\beta})\varphi_{\beta\alpha} = N_v^{\alpha}$.

Proof. Suppose that $N_u^{\alpha} \cap N_v^{\beta} \neq \emptyset$. To show that $N_u^{\alpha} \supseteq N_v^{\beta}$, we let $(x, y) \in$ $N_{u}^{\alpha} \cap N_{v}^{\beta}$ and assume on the contrary that there is $(a,b) \in N_{v}^{\beta} \setminus N_{u}^{\alpha}$. By applying Theorem 2.2(3), it forces that $v \notin \operatorname{ran} \alpha$. Using Theorem 2.2(2), $(a,b) \in N_w^{\alpha}$ for some $w \in \operatorname{ran} \alpha$, $w \neq u$. Since $(x,y), (a,b) \in N_v^{\beta}$, it implies that $x, y, a, b \in v\beta^{-1}$. That is, $(y,a) \in \beta\beta^{-1} \subseteq \alpha\alpha^{-1}$, so $(y,a) \in N_z^{\alpha}$ for some $z \in \operatorname{ran} \alpha$. From $(x, y) \in N_u^{\alpha}$, $(y, a) \in N_z^{\alpha}$ and $(a, b) \in N_w^{\alpha}$, we have $u = y\alpha = z = a\alpha = w$, a contradiction. Hence, (1) is proved.

For (2), let N_u^{α} be a class of $\alpha \alpha^{-1}$. By Theorem 2.2(1) and (3), we have $u \in \operatorname{ran} \alpha \subseteq \operatorname{ran} \beta$ and let $x \in u\beta^{-1}$, that is, $x\beta = x\alpha$. Thus $(x, x) \in N_u^\beta \cap N_u^\alpha$. From (1), this finishes the proof. \square

As an immediate consequence of the above lemma, we get:

Theorem 3.2. For $\alpha, \beta \in T([n])$ with

 $\mathcal{A}_{\alpha} = a_1 E[a_1 \alpha^{-1}] \oplus \cdots \oplus a_t E[a_t \alpha^{-1}] \text{ and } \mathcal{A}_{\beta} = b_1 E[b_1 \beta^{-1}] \oplus \cdots \oplus b_k E[b_k \beta^{-1}]$ where $\operatorname{ran} \alpha = \{a_1 < \cdots < a_t\}$ and $\operatorname{ran} \beta = \{b_1 < \cdots < b_k\}$, we have that $\alpha \preccurlyeq \beta$ on T([n]) if and only if the following statements hold.

- (1) For $i = 1, \ldots, t$, $a_i = b_i$ and $E[b_i\beta^{-1}]$ is embedded in $E[a_i\alpha^{-1}]$.
- (2) For i > t, there is $j \in \{1, ..., t\}$ such that $E[b_i\beta^{-1}]$ and $E[b_j\beta^{-1}]$ can be embedded in $E[a_j\alpha^{-1}]$.

Proof. From Corollary 2.3, we let $(x, y) \in (\alpha \cup \beta)\beta^{-1}$. Then there is $z \in [n]$ such that $(x, z) \in \alpha \cup \beta$ and $(y, z) \in \beta$. Suppose $z \in \operatorname{ran} \alpha \subseteq \operatorname{ran} \beta$, by (1). It follows that (x, y) is an arc in $\Gamma_{N_z^{\beta}}$. Since $E[z\beta^{-1}]$ is embedded in $E[z\alpha^{-1}]$, by (2), it implies that (x, y) is an arc in $\Gamma_{N_z^{\alpha}}$. Then $(x, y) \in \alpha \alpha^{-1}$. By the same process when $z \in \operatorname{ran} \beta \setminus \operatorname{ran} \alpha$, we have $(\alpha \cup \beta)\beta^{-1} \subseteq \alpha \alpha^{-1}$. Hence, $\alpha \preccurlyeq \beta$ on T([n]).

On the other hand, the proof can be done by applying Lemma 3.1.

Therefore, we directly obtain the following corollary.

Corollary 3.3. Let $\mathcal{A} = \bigoplus_{i=1}^{t} y_i E[\mathcal{Y}_i]$ be a wighted adjacency matrix on [n]. For any wighted adjacency matrix on [n], namely \mathcal{B} , we have that if $\zeta_{\mathcal{A}} \preccurlyeq \zeta_{\mathcal{B}}$ on T([n]), then \mathcal{B} can be written in the form $\bigoplus_{i=1}^{t} (b_{i1}E[\mathcal{K}_{i1}] \oplus b_{i2}E[\mathcal{K}_{i2}] \oplus \cdots \oplus$ $b_{ik_i}E[\mathcal{K}_{ik_i}])$ where

- (1) each $\{\mathcal{K}_{i1}, \mathcal{K}_{i2}, \ldots, \mathcal{K}_{ik_i}\}$ forms a partition of \mathcal{Y}_i and
- (2) $y_1 = b_{11}, b_{12}, \ldots, b_{1k_1}, \ldots, y_t = b_{t1}, b_{t2}, \ldots, b_{tk_t}$ are all distinct in [n].

Example 3.4. Recall A_{α} as in Example 2.4. We let $B_1 = 5E[\{2, 5, 8, 9\}], B_2 =$ $5E[\{2\}] \oplus 2E[\{5,9\}], B_3 = 5E[\{2\}] \oplus 2E[\{5\}] \oplus 4E[\{9\}], \text{ and}$

> $\mathcal{A}_1 = E[\{1,3\}] \oplus B_1 \oplus 7E[\{6\}] \oplus 9E[\{4,7\}],$ $\mathcal{A}_2 = E[\{1,3\}] \oplus 3E[\{8\}] \oplus B_2 \oplus 7E[\{6\}] \oplus 9E[\{4,7\}],$ $\mathcal{A}_3 = E[\{1,3\}] \oplus 3E[\{8\}] \oplus B_3 \oplus 7E[\{6\}] \oplus 9E[\{4,7\}].$

Then we have $\zeta_{\mathcal{A}_1} \preccurlyeq \alpha \preccurlyeq \zeta_{\mathcal{A}_2} \preccurlyeq \zeta_{\mathcal{A}_3}$.

To illustrate the embedding of any two principle submatrices which still satisfies the order-preserving property, we give a diagram (in Fig. 2) of all lower bounds of the map $\langle 1, 1, 3, 4 \rangle$ on $\mathcal{O}([4])$.

FIGURE 2. All lower bounds of (1, 1, 3, 4) on $\mathcal{O}([4])$.

From Corollary 3.3 and the observation in Fig. 2, the following theorem gives a characterization of the natural partial order on $\mathcal{O}([n])$.

Theorem 3.5. Let $\alpha, \beta \in \mathcal{O}([n])$ with $\mathcal{A}_{\alpha} = \operatorname{diag}(a_{1}^{t_{1}}, a_{2}^{t_{2}}, \ldots, a_{k}^{t_{k}})$. Then $\alpha \preccurlyeq \beta$ on $\mathcal{O}([n])$ if and only if $\mathcal{A}_{\beta} = \operatorname{diag}(\mathcal{B}_{1}, \ldots, \mathcal{B}_{k})$ where for each i, (i) $\mathcal{B}_{i} = \operatorname{diag}(b_{i1}^{m_{i1}}, b_{i2}^{m_{i2}}, \ldots, b_{it_{i}}^{m_{it_{i}}})$,

- (ii) $m_{i1} + m_{i2} + \dots + m_{it_i} = t_i$,
- (iii) $b_{11} < b_{12} < \dots < b_{1t_1} < \dots < b_{k1} < b_{k2} < \dots < b_{kt_k} \in [n], and$ (iv) $a_i \in \{b_{i1}, b_{i2}, \dots, b_{it_i}\}.$

Remark 3.6. All constant maps are minimal on $(\mathcal{O}([n]), \preccurlyeq)$. The identity map is the maximum element on $(T([n]), \preccurlyeq)$ but not on $(\mathcal{O}([n]), \preccurlyeq)$.

To describe the maximal element of $\mathcal{O}([n])$, we prove the following proposition.

Proposition 3.7. Let $\alpha \in \mathcal{O}([n])$ with $\mathcal{A}_{\alpha} = \operatorname{diag}(a_1^{t_1}, a_2^{t_2}, \ldots, a_k^{t_k})$. Then α is not maximal on $\mathcal{O}([n])$ if and only if one of the following statements holds.

- (1) $t_i > 1$ and $a_{i+1} a_{i-1} > 2$ for $i \in \{2, \dots, k-1\}$.
- (2) $t_1 > 1$ and $a_2 1 > 1$.
- (3) $t_k > 1$ and $n a_{k-1} > 1$.

Proof. Suppose (1) holds. Let 1 < i < k be such that $t_i > 1$ and $a_{i+1} - a_{i-1} > 2$. Then there is $c_i \in [n]$, either $c_i \in [a_i \to a_{i+1}]$ or $c_i \in [a_{i-1} \to a_i]$. Without loss of generality, we assume $a_i < c_i < a_{i+1}$. Define

$$\mathcal{A} = \operatorname{diag}(a_1^{t_1}, a_2^{t_2}, \dots, a_i^{t'_i}, c_i^{t''_i}, a_{i+1}^{t_{i+1}}, \dots, a_k^{t_k})$$

where $t'_i, t''_i > 0$ and $t'_i + t''_i = t_i$. By Theorem 3.5, we have $\alpha \preccurlyeq \zeta_A$ on $\mathcal{O}([n])$. By using a similar technique, α is not maximal on $\mathcal{O}([n])$ if (2) or (3) holds.

Conversely, assume that α is not maximal on $\mathcal{O}([n])$. We directly obtain the result from the conditions of Theorem 3.5.

Observe that the map $\langle 1, 1, 3, 4 \rangle$ satisfies the condition 2 in Proposition 3.7. Then $\langle 1, 1, 3, 4 \rangle$ is not maximal on $\mathcal{O}([4])$.

Remark 3.8. Let \mathfrak{S} be the set of all finite sequences of positive integers. We define a partial order \leq on \mathfrak{S} as follows:

For any $\mathfrak{a}, \mathfrak{b} \in \mathfrak{S}$ with $\mathfrak{a} = (a_1, \ldots, a_m)$ and $\mathfrak{b} = (b_1, b_2, \ldots, b_n)$,

$$\mathfrak{a} \leq \mathfrak{b} \quad \Leftrightarrow \quad \exists \text{ a strictly increasing function } \theta : [m] \rightarrow [n] \text{ such that}$$

 $a_1 = b_1 + \dots + b_{(1)\theta} \text{ and}$
 $a_i = b_{(i-1)\theta+1} + \dots + b_{(i)\theta} \text{ for all } i \geq 2,$

then we call \leq the *block partitions order* on \mathfrak{S} .

Using Theorem 3.5 and the poset $(\mathfrak{S}, \trianglelefteq)$, it gives us some necessary conditions when two transformations are being compared.

Corollary 3.9. If $\alpha \preccurlyeq \beta$ on $\mathcal{O}([n])$, then ran $\alpha \subseteq \operatorname{ran} \beta$ and $\pi_{\alpha} \trianglelefteq \pi_{\beta}$ on \mathfrak{S} .

The converse does not hold. For example, $\alpha = \langle 4, 4, 4, 5, 5 \rangle$ and $\beta = \langle 1, 1, 1, 4, 5 \rangle$ are incomparable under \preccurlyeq on $\mathcal{O}([4])$ but $\pi_{\alpha} = (3, 2) \trianglelefteq (3, 1, 1) = \pi_{\beta}$ on \mathfrak{S} .

In next section, the poset $(\mathfrak{S}, \trianglelefteq)$ is a useful tool to understand the structure of the poset $(\mathcal{O}([n]), \preccurlyeq)$.

4. Graded posets

Given any poset (P, \leq) and for $x, y \in P$, x is said to be *covered* by y if x < y and there is no $z \in P$ such that x < z < y and we let $C_P(y)$ stands for the set of all elements in P which is covered by y.

The length of a finite chain C, denoted l(C), is |C| - 1. The rank of a finite poset P is defined to be the maximum length of chains of P. The poset Pis weakly graded if there exists a rank function $\operatorname{rk} : P \to \mathbb{N}_0$ such that (i) $(x)\operatorname{rk} = 0$ if x is minimal in P, and (ii) $(x)\operatorname{rk} = (y)\operatorname{rk} - 1$ if $x \in C_P(y)$. A weakly poset P is called strongly graded if every maximal chain of P has the same length.

A subposet Q of a poset P is called a *copy of* $(\mathbf{i} + \mathbf{j})$ if Q is isomorphic to the disjoint union of two chains of length i - 1 and j - 1. If P contains no copy of $(\mathbf{i} + \mathbf{j})$, we say that P is $(\mathbf{i} + \mathbf{j})$ -avoiding.

Remark 4.1. For $n \in \mathbb{N}$, the partitions of n, denoted by P_n , is the subset of \mathfrak{S} which contains all nonincreasing sequence. Under the dominance order \ll (or majorization order) on P_n in the sense that

$$a_1 + a_2 + \dots + a_k \leq b_1 + b_2 + \dots + b_k$$
 for all k,

we observe that $(2,2,1) \ll (3,1,1)$ on (P_5, \ll) whereas (2,2,1) and (3,1,1) are incomparable on $(\mathfrak{S}, \trianglelefteq)$. It was shown in [2,5], that (P_n, \ll) is not weakly graded when $n \ge 7$.

FIGURE 3. (P_7, \ll) is not weakly graded and (P_7, \trianglelefteq) is strongly graded.

For $n \in \mathbb{N}$, we denote

$$\mathfrak{P}_n = \{\mathfrak{a} = (a_1, \ldots) \in \mathfrak{S} : \sum \mathfrak{a} = a_1 + \cdots = n\}.$$

Note that each $\mathfrak{a} \in \mathfrak{P}_n$ can be viewed as an equivalence class of $\alpha \in \mathcal{O}([n])$, given by $\pi_{\alpha} = \mathfrak{a}$. To study the poset $(\mathcal{O}([n]), \preccurlyeq)$, we first show that $(\mathfrak{P}_n, \trianglelefteq)$ is strongly graded. The following lemma is needed.

Lemma 4.2. For $\mathfrak{a} = (a_1, a_2, \dots, a_m) \in (\mathfrak{S}, \trianglelefteq)$, suppose that \mathfrak{a} is not minimal. Then for any $\mathfrak{b} \in C_{\mathfrak{S}}(\mathfrak{a})$, there exists $j \in \mathbb{N}$ such that $a_j, a_{j+1} \neq 0$ and $\mathfrak{b} = (a_1, \dots, a_{j-1}, a_j + a_{j+1}, a_{j+2}, \dots)$.

Proof. Let **a** = $(a_1, a_2, ..., a_m)$, **b** = $(b_1, b_2, ..., b_n) \in \mathfrak{S}$. Suppose **a** is not minimal and **b** ≤ **a**. Then there is $\theta : [n] \to [m]$ a strictly increasing function such that $b_1 = a_1 + \cdots + a_{(1)\theta}$ and $b_i = a_{(i-1)\theta+1} + \cdots + a_{(i)\theta}$ for i > 1. Assume that **b** ≠ **a**. We have θ is not the identity function. Suppose there are $1 < j_1 < j_2 \in \mathbb{N}$ such that $(j_1)\theta - (j_1 - 1)\theta \ge 2$ and $(j_2)\theta - (j_2 - 1)\theta \ge 2$. It follows that $b_{j_1} = a_{(j_1-1)\theta+1} + \cdots + a_{(j_1)\theta}$ and $b_{j_2} = a_{(j_2-1)\theta+1} + \cdots + a_{(j_2)\theta}$. Let **c** = $(b_1, ..., b_{j_1-1}, b_{j_1} - a_{(j_1)\theta}, a_{(j_1)\theta}, b_{j_1+1}, ..., b_{j_2}, ...) \neq \mathfrak{b}$. It is clear that $\mathfrak{b} \trianglelefteq \mathfrak{c} \trianglelefteq \mathfrak{a}$ with $\mathfrak{c} \neq \mathfrak{a}$. These imply that $\mathfrak{b} \notin C_{\mathfrak{S}}(\mathfrak{a})$. Next, if $\mathfrak{b} = (a_1, ..., a_{j-1}, a_j + a_{j+1}, a_{j+2}, a_{j+3}, ...) \trianglelefteq \mathfrak{a}$, that is, $\mathfrak{b} \notin C_{\mathfrak{S}}(\mathfrak{a})$. Hence, the lemma is proved.

Theorem 4.3. For $n \in \mathbb{N}$, the posets $(\mathfrak{P}_n, \trianglelefteq)$ and (P_n, \trianglelefteq) are strongly graded of rank n - 1.

Proof. Define $\mathrm{rk} : \mathfrak{P}_n \to \mathbb{N}_0$ by $(\mathfrak{a})\mathrm{rk} = k - 1$ where $\mathfrak{a} = (a_1, a_2, \ldots, a_k) \in \mathfrak{P}_n$. By applying Lemma 4.2, rk is the rank function.

The following proposition is directly obtained from Theorem 3.5 and Lemma 4.2.

Proposition 4.4. For $\beta \in \mathcal{O}([n])$ with $\mathcal{A}_{\beta} = \text{diag}(b_1^{t_1}, b_2^{t_2}, \dots, b_k^{t_k})$, if $\alpha \in \mathcal{O}([n])$ and α is covered by β , then $\exists j \in \{1, \dots, k-1\}$ such that

$$\mathcal{A}_{\alpha} = \operatorname{diag}(b_1^{t_1}, b_2^{t_2}, \dots, (b_j * b_{j+1})^{t_j + t_{j+1}}, b_{j+2}^{t_{j+2}}, \dots, b_k^{t_k}),$$

where $b_j * b_{j+1}$ is either b_j or b_{j+1} .

Proposition 4.5. For 0 < k < n, the poset $(\mathcal{O}([n]), \preccurlyeq)$ has a maximal chain C with l(C) = k.

Proof. Suppose that n > 2. For $i \in \{1, \ldots, n-2\}$, we let $\mathfrak{a}_i = (n-i, \underbrace{1, \ldots, 1}_{i \text{ copies}}) \in \mathbb{C}$

 \mathfrak{P}_n . Define an order-preserving map ω_i on [n] which $\pi_{\omega_i} = \mathfrak{a}_i$ by

$$\omega_i = \langle \underbrace{1, \dots, 1}_{n-i \text{ copies}}, 2, 2+1, \dots, 2+(i-1) \rangle.$$

We observe that $\mathcal{A}_{\omega_i} = \text{diag}(1^{n-i}, 2, 2+1, \dots, 2+(i-1))$. By using Proposition 3.7, it follows that ω_i is a maximal element on $(\mathcal{O}([n]), \preccurlyeq)$. Applying Proposition 4.4, the length of all maximal chains having ω_i as the maximum element is *i*.

As a consequence of Proposition 4.5, we have the following result.

Theorem 4.6. For $n \in \mathbb{N}$ with n > 2, the poset $(\mathcal{O}([n]), \preccurlyeq)$ is weakly graded but not strongly graded.

Remark 4.7. It was shown in [8] that the cardinality of $\mathcal{E}(\mathcal{O}([n]))$, the set of all idempotents of $\mathcal{O}([n])$, is F_{2n} (the alternate Fibonacci number given by $F_1 = F_2 = 1$). In Fig. 4, we list all elements of $\mathcal{E}(\mathcal{O}([5]))$ and exhibit some maximal chains of length 4 in $\mathcal{E}(\mathcal{O}([5]))$ such as $\langle 1, 1, 1, 1, 1 \rangle \preccurlyeq \langle 1, 3, 3, 3 \rangle \preccurlyeq \langle 1, 3, 3, 3, 5 \rangle \preccurlyeq \langle 1, 3, 3, 4, 5 \rangle \preccurlyeq \langle 1, 2, 3, 4, 5 \rangle$.

FIGURE 4. All idempotent elements of $\mathcal{O}([5])$.

Proposition 4.8. For $n \in \mathbb{N}$, the following statements hold.

- (1) The poset $\mathcal{E}(\mathcal{O}([n]))$ is strongly graded of rank n-1.
- (2) The number of all maximal chains of $\mathcal{E}(\mathcal{O}([n]))$ is $2^{n-1}(n-1)!$.

Proof. For (1), it follows from Proposition 4.4. Next, we let $\beta \in \mathcal{E}(\mathcal{O}([n]))$ with $\mathcal{A}_{\beta} = \operatorname{diag}(b_1^{t_1}, b_2^{t_2}, \ldots, b_k^{t_k})$. Since $\beta = \beta^2$, we have that $b_1 \in [1 \to t_1]$, $b_k \in [n - t_k + 1 \to n]$ and each 0 < l < k, $b_l \in [\sum_{i=1}^l t_i + 1 \to \sum_{i=1}^l t_i + t_{l+1}]$. Using Proposition 4.4 and applying the diagram in Fig. 4, we obtain that $|C_{\mathcal{E}(\mathcal{O}([n]))}(\beta)| = 2(k-1)$. As the identity map is the maximum element on $\mathcal{E}(\mathcal{O}([n]))$, it follows that there are $2(n-1) \cdot 2(n-2) \cdot 2(n-3) \cdots 2(n-(n-1))$ chains of $\mathcal{E}(\mathcal{O}([n]))$ having length n-1.

Proposition 4.9. For $i \geq 3$, the poset $(\mathcal{O}([n]), \preccurlyeq)$ is weakly graded (i + 1)-avoiding if n < i.

Proof. As in the proof of Proposition 4.5, we consider a maximal element $\omega_1 = \langle \underbrace{1, \ldots, 1}_{n-1 \text{ copies}}, 2 \rangle$. Next, we choose a chain C of $\mathcal{E}(\mathcal{O}([n]))$ with $l(C) = \mathcal{O}([n])$ with $l(C) = \mathcal{O}([n])$.

n-1 and $\min(C) = \langle 3, \ldots, 3 \rangle$. Since the set of all lower bounds of ω_1 is

 $\{\langle 1, \ldots, 1 \rangle, \langle 2, \ldots, 2 \rangle\}$, it follows that $(\mathcal{O}([n]), \preccurlyeq)$ is not an $(\mathbf{n} + \mathbf{1})$ -avoiding poset.

Remark 4.10. A map $\alpha \in T([n])$ is called *regressive* if $x\alpha \leq x$ for all $x \in [n]$. We denote $\mathcal{R}([n])$ the subsemigroup of T([n]) of all regressive maps. In [10], Laradji and Umar proved that the cardinality of the semigroup $\mathcal{O}([n]) \cap \mathcal{R}([n])$, denoted by $\mathcal{C}([n])$, is $\frac{1}{n+1} \binom{2n}{n}$.

FIGURE 5. The poset $(\mathcal{C}([4]), \preccurlyeq)$ is $(\mathbf{4} + \mathbf{1})$ -avoiding and the poset $(\mathcal{R}([3]), \preccurlyeq)$ is $(\mathbf{3} + \mathbf{1})$ -avoiding.

Under the natural partial ordering \preccurlyeq , the constant map $\langle 1, \ldots, 1 \rangle$ is the minimum element on $\mathcal{C}([n])$ and $\mathcal{R}([n])$. Then the following proposition is clear.

Proposition 4.11. The following statements hold.

- (1) The poset $(\mathcal{C}([n]), \preccurlyeq)$ is $(\mathbf{n}+\mathbf{1})$ -avoiding.
- (2) The poset $(\mathcal{R}([n]), \preccurlyeq)$ is $(\mathbf{n} + \mathbf{1})$ -avoiding.

Remark 4.12. For $\alpha \in \mathcal{O}([n])$, let $\mathcal{O}_n(\mathbf{i} + \alpha)$ be the collections of copies $(\mathbf{i} + \mathbf{1})$ in $\mathcal{O}([n])$ which α is incomparable to all members of a chain of length i - 1. Note that we define $\mathcal{R}_n(\mathbf{i} + \alpha)$ and $\mathcal{C}_n(\mathbf{i} + \alpha)$ in a similar way. We observe that 1. $|\mathcal{O}_3(\mathbf{3} + \langle 2, 3, 3 \rangle)| = 3$, $|\mathcal{O}_3(\mathbf{2} + \langle 2, 3, 3 \rangle)| = 9$.

2. $|\mathcal{R}_3(\mathbf{3} + \langle 1, 1, 2 \rangle)| = 0, |\mathcal{R}_3(\mathbf{2} + \langle 1, 1, 2 \rangle)| = 2.$ 3. $|\mathcal{C}_4(\mathbf{4} + \langle 1, 1, 1, 2 \rangle)| = 0, |\mathcal{C}_4(\mathbf{3} + \langle 1, 1, 1, 2 \rangle)| = 6, |\mathcal{C}_4(\mathbf{2} + \langle 1, 1, 1, 2 \rangle)| = 18.$

Question. What is a formula for $|S_n(\mathbf{i} + \alpha)|$ when α is maximal in S([n]), where S is \mathcal{O} , \mathcal{R} , or C?

Acknowledgement This research has been financially supported by Walailak University, Thailand (Grant no. WU61114).

References

- M. D. Atkinson, B. E. Sagan, and V. Vatter, Counting (3 + 1)-avoiding permutations, European J. Combin. 33 (2012), no. 1, 49-61. https://doi.org/10.1016/j.ejc.2011. 06.006
- [2] T. Brylawski, The lattice of integer partitions, Discrete Math. 6 (1973), 201–219. https: //doi.org/10.1016/0012-365X(73)90094-0
- [3] S. Chaopraknoi, T. Phongpattanacharoen, and P. Rawiwan, The natural partial order on some transformation semigroups, Bull. Aust. Math. Soc. 89 (2014), no. 2, 279–292. https://doi.org/10.1017/S0004972713000580
- [4] _____, The natural partial order on linear semigroups with nullity and co-rank bounded below, Bull. Aust. Math. Soc. 91 (2015), no. 1, 104–115. https://doi.org/10.1017/ S0004972714000793
- [5] C. Greene and D. J. Kleitman, Longest chains in the lattice of integer partitions ordered by majorization, European J. Combin. 7 (1986), no. 1, 1–10. https://doi.org/10.1016/ S0195-6698(86)80013-0
- [6] R. E. Hartwig, How to partially order regular elements, Math. Japon. 25 (1980), no. 1, 1–13.
- P. M. Higgins, Combinatorial results for semigroups of order-preserving mappings, Math. Proc. Cambridge Philos. Soc. 113 (1993), no. 2, 281–296. https://doi.org/ 10.1017/S0305004100075964
- [8] J. M. Howie, Products of idempotents in certain semigroups of transformations, Proc. Edinburgh Math. Soc. (2) 17 (1970/71), 223-236. https://doi.org/10.1017/ S0013091500026936
- G. Kowol and H. Mitsch, Naturally ordered transformation semigroups, Monatsh. Math. 102 (1986), no. 2, 115–138. https://doi.org/10.1007/BF01490204
- [10] A. Laradji and A. Umar, Combinatorial results for semigroups of order-preserving full transformations, Semigroup Forum 72 (2006), no. 1, 51–62. https://doi.org/10.1007/ s00233-005-0553-6
- [11] J. B. Lewis and Y. X. Zhang, Enumeration of graded (3+1)-avoiding posets, J. Combin. Theory Ser. A 120 (2013), no. 6, 1305–1327. https://doi.org/10.1016/j.jcta.2013. 03.012
- [12] M. P. O. Marques-Smith and R. P. Sullivan, Partial orders on transformation semigroups, Monatsh. Math. 140 (2003), no. 2, 103–118. https://doi.org/10.1007/s00605-002-0546-4
- [13] K. Nambooripad, The natural partial order for semigroups, Proc. Edinb. Math. Soc. 23 (1980), no. 2, 249–260.
- [14] K. Sangkhanan and J. Sanwong, Partial orders on semigroups of partial transformations with restricted range, Bull. Aust. Math. Soc. 86 (2012), no. 1, 100–118. https://doi. org/10.1017/S0004972712000020
- [15] _____, Green's relations and partial orders on semigroups of partial linear transformations with restricted range, Thai J. Math. 12 (2014), no. 1, 81–93.

- [16] M. Skandera, A characterization of (3 + 1)-free posets, J. Combin. Theory Ser. A 93 (2001), no. 2, 231–241. https://doi.org/10.1006/jcta.2000.3075
- [17] R. P. Stanley and J. R. Stembridge, On immanants of Jacobi-Trudi matrices and permutations with restricted position, J. Combin. Theory Ser. A 62 (1993), no. 2, 261–279. https://doi.org/10.1016/0097-3165(93)90048-D
- [18] L. Sun and J. Sun, A note on naturally ordered semigroups of transformations with invariant set, Bull. Aust. Math. Soc. 91 (2015), no. 2, 264–267. https://doi.org/10. 1017/S0004972714000860
- [19] _____, A natural partial order on certain semigroups of transformations with restricted range, Semigroup Forum 92 (2016), no. 1, 135–141. https://doi.org/10.1007/s00233-014-9686-9

Phichet Jitjankarn Division of Mathematics Walailak University Nakhon Si Thammarat 80161, Thailand *Email address*: jitjankarn@gmail.com