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ON WEAKLY GRADED POSETS OF ORDER-PRESERVING
MAPS UNDER THE NATURAL PARTIAL ORDER

PHICHET JITJANKARN

ABSTRACT. In this paper, we simplify the natural partial ordering < on
the semigroup O([n]) under composition of all order-preserving maps on
[n] ={1,...,n}, and describe its maximal elements. Also, we show that
the poset (O([n]), <) is weakly graded and determine when (O([n]), x)
has a structure of (i + 1)-avoidance.

1. Introduction

Let X be a nonempty set and 7(X) the semigroup under composition of
all transformations from X into itself. It is well-known that T'(X) is a regu-
lar semigroup, i.e., Ya € T(X) 38 € T(X), afa = «. In 1980, the natural
partial order on regular semigroups was independently studied by Hartwig [6]
and Nambooripad [13]. Using terms of images and inverse images of transfor-
mations, in 1986, Kowol and Mitsch [9] described the natural partial order <
on T(X). Later, in 2003, Marques-Smith and Sullivan [12] extended some of
previous work to the semigroup P(X), consisting of all partial transformation
from a subset of X into X. Additionally, T'(X) is a subsemigroup of P(X).
Since then, the natural partial order on the semigroup of transformations has
been discovered for numerous subsemigroups of P(X) (see [3,14,18,19]) for X
as a nonempty set, and also [4,15] for X as a vector space.

For n € N, let [n] = {1,2,...,n}. A map a € T([n]) is called order-
preserving if © < y implies za < ya for all z,y € [n]. We denote by O([n]) the
subsemigroups of T'([n]) of all order-preserving maps. This type of semigroups
has been extensively studied (see [7,8,10]), it remains open for partial ordering.
It is well-known that the identity map is the maximum element on (7'([n]), %)
but not on (O([n]), ). In this paper, we simplify the natural partial ordering
=< on O([n]) and also describe the maximal elements.

The notion of (i 4+ 1)-avoiding posets has been studied in many areas of com-
binatorics; for example, see [1,11,16]. Especially, the (3 + 1)-avoiding posets
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play a role in the Stanley-Stembridge conjecture in [17]. For this reason, we
direct our attention to study the structure of (i 4+ 1)-avoidance in some sub-
semigroups of O([n]) with the natural partial order.

2. Preliminaries and notations
For a nonempty set X and o € T(X), we denote ar ™! as a subset of X x X,
aa b ={(z,y) € X x X : 32z € X, (z,2),(2,9) € a}.
The following results describe the characterisations of the natural partial order
< on T(X) (see [9,12]).

Theorem 2.1. For o, 8 € T(X), we have that o < 5 on T(X) if and only if
rana C ran 8 and a = Bu for some idempotent p € T(X).

Theorem 2.2. For «, 8 € T(X), we have that a < 8 on T(X) if and only if
the following statements hold.

(1) rana C ran 3.

(2) BB~ Caa™t.

(3) For x € X with 28 € rana, za = zf.
Corollary 2.3. If o, 8 € T(X), then a < 8 on T(X) if and only if rana C
ran 3 and (a«UB)B~ C aa™t.

‘We now recall some notations which will be useful later.

e For any m,n € N with m < n, let

[m—=n]:={mm+1,...,n}.
e Given = (/. 20 ) € T([n]), we may write a = (c1,¢2,...,Cpn).
Let o = (c1,¢2,...,¢n) € T([n]). With non-commuting the product operator
of ¢ico -+ ¢p, denoted by c’ilcifﬂcifﬂﬁl - when ¢1 # ¢y 41 and ¢y, 41 # ¢,
O Ct,4t;,,+1 for i > 1, so we denote
(2.1) o := (t1,t2,t3,...)

as a sequence of positive integers with respect to . For example, consider
a=(1,1,1,3,1,1,4,3,4) € T([9]). We have 7, = (3,1,2,1,1,1).

For o € T([n]), we have another way to view o and aa™! as two sets of arcs
for two digraphs, namely 'y, := ([n], @) and T'po-1 := ([n], aa™1), respectively,
where [n] is the set all vertices. For example, let o = (1,5,1,9,5,7,9,3,5) €
T([9]). The digraphs 'y, and T',,-1 are in Fig. 1.

Let E be an n x n matrix of all ones. For two principal submatrices E[X]]
and E[X3] of E, we say that F[X] is embedded in E[X5] if X1 C X3 C [n].

Let « € T([n]). If rana = {ai,...,a:}, we write A, for the symmetric
matrix which is defined as follows

(2.2) Ao = a1EBlaia™ @ - @ aBlaza™ ],
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(A) The digraph Ta (B) The digraph I' -1

FIGURE 1. Digraphs for a and aa™?

A, is called the weighted adjacency matriz of the digraph I' -1

Given distinct elements y1, ..., y: of [n] and a partition )y, ..., Y; of [n], we
let A=y E[D] @ ®y:E[V:] be a weighted adjacency matrix on [n] with
respect to (4 = (31 %2 Y1) € T([n]).
Example 2.4. Consider a = (1,5,1,9,5,7,9,3,5), 8 = (1,1,3,5,5,5,7,9,9) €
T([9]). We have

Ao = E[{1,3}] @ 3E[{8} ® 5F[{2,5,9}| @ TE[{6}] ® IE[{4, 7}]

1 01 00 0 00 O 1 110 0 0 0O O 0O
05 005 000 5 110 00 0 0 0O
101 00 O0O0O0O0 0 0 000 0 00O
0009 00900 00 O (5 5 5, 0 00

=105 0050005 |~]0O0 01|55 5[0 00
00 0O0O0OT7TO0O0O0 00 O (5550 00O
0009 00900 00 0 00 0 0 0
000O0OOO0CO03P0 00 0 00O 0199
05 005 0005 00 0O 0 O0O0 0

= E[{1,2}] @ 3E[{3}] @ 5E[{4,5,6}] @ TE[{T}] @ 9E[{8,9}] = Ag.

Observe that if 8 € O([n]), then the weighted adjacency matrix with respect
to B is a diagonal blocks matrix.
For convenience, given an order-preserving map on [n],

a={(C1y...,C1,C2y ey Cy ey Chyenny CL)
—_——— —— ———
th to th
with o = (t1,t2, ..., 1), we write diag(cl, cb? ,...,CZ"‘) for the weighted adja-

cency matrix with respect to «,

Aa = ClE[[l — tl]] @CQEHtl +1— 3] +t2]] D @ckE[[nftk +1— ’I'LH
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3. Partial ordering through the weighted adjacency matrices

For a € T([n]) with rana = {ay,...,a:}, we denote a set of Ng,..., N5
forms a partition of aa™ where N = {(z,y) | #,y € a;a™'}. By viewing
Iya = (aia™!, N2 ) as a subdigraph of 'y ,-1, we obtain that Ela;a™1] is the
adjz;cency matrix for T’ Ng -

Lemma 3.1. Let «, 5 € T([n]) with
Bt = U NUB and oo~ t= U NE.

vEran 3 u€Eran
Suppose that o < on T([n]). Then the following statements hold.
(1) If N* N NP #0, then N D NP.
(2) There is a surjective map, denoted by pg., which sends NP to N& where
NP C N&. Moreover, for v € ran B3, if v € rana, then (N2)pga = NS

v

Proof. Suppose that N& N N/ # (). To show that N& D NfZ, we let (z,y) €
N2 N NP and assume on the contrary that there is (a,b) € NS\N®. By
applying Theorem 2.2(3), it forces that v ¢ rana. Using Theorem 2.2(2),
(a,b) € N for some w € rana, w # u. Since (,y),(a,b) € N, it implies
that z,y,a,b € v3~'. That is, (y,a) € 887! C aa™!, so (y,a) € N for
some z € ranca. From (z,y) € NS, (y,a) € NY and (a,b) € N&, we have
u=ya =z = ax = w, a contradiction. Hence, (1) is proved.

For (2), let N be a class of aa™!. By Theorem 2.2(1) and (3), we have
u € rana C ran B and let x € uB~", that is, 8 = xa. Thus (z,z) € NP N N2,
From (1), this finishes the proof. O

As an immediate consequence of the above lemma, we get:

Theorem 3.2. For a, 8 € T([n]) with
Ay = alE[alafl] DD atE[atoFl} and Ag = blE[blﬂfl] DD bkE[bkﬂfl]

where rtana = {a; < -+ < a;} and ranff = {by < .-+ < by}, we have that
a < B on T([n]) if and only if the following statements hold.
(1) Fori=1,...,t, a; = b; and E[b;37] is embedded in Ela;a™"].
(2) Fori>t, thereis j € {1,...,t} such that
E[b;37] and E[b; 7] can be embedded in Elajo~1].

Proof. From Corollary 2.3, we let (z,y) € (U 3)B~L. Then there is z € [n]

such that (z,2) € aU S and (y,z) € 8. Suppose z € rana C ran 3, by (1). It
follows that (z,y) is an arc in I'ys. Since E[287] is embedded in E[za~!], by

(2), it implies that (2,y) is an arc in Iye. Then (z,y) € aa™!. By the same
process when z € ran B\ran o, we have (o U 3)5~t C aa~!. Hence, a < 3 on

T([n))-

On the other hand, the proof can be done by applying Lemma 3.1. ([

Therefore, we directly obtain the following corollary.
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Corollary 3.3. Let A= @!_, y;E[Vi] be a wighted adjacency matriz on [n).
For any wighted adjacency matriz on [n], namely B, we have that if (4 < CB on
T([n]), then B can be written in the form @'_, (b E[Ki1] ® b E[Kia] © - - @
bik, E[KCik,]) where

(1) each {Ki1,Kiz,...,Kig, } forms a partition of Vi and

(2) Y1 = bll; b12, ey blkla oY = bﬂ, th, ey btkt are all distinct in [Tl}
Example 3.4. Recall A, as in Example 2.4. Welet By = 5F[{2,5,8,9}], By =
5E[{2}] ® 2E[{5 9}], Bs =5E[{2}] ® 2E[{5}] ® 4E[{9}], and

E[{1,3}] @ By © TE[{6}] ® 9E[{4,7}],

E[{l, 3} @ 3E[{8}] & B, ® TE[{6}] & 9E[{4,7}],
E[{1,3}] @ 3E[{8}] ® Bs © TE[{6}] © 9E[{4,T}].

Then we have CAl S a = Cay < Cas-

To illustrate the embedding of any two principle submatrices which still
satisfies the order-preserving property, we give a diagram (in Fig. 2) of all
lower bounds of the map (1,1,3,4) on O([4]).

7,3749\
(1,1,1,4) (1,1,4,4) kﬁ’u?)) (3,3,3,4)

4

(1,1,1,1) (4,4,4,4) (3,3,3,3)

FIGURE 2. All lower bounds of (1,1,3,4) on O([4]).

From Corollary 3.3 and the observation in Fig. 2, the following theorem
gives a characterization of the natural partial order on O([n]).

Theorem 3.5. Let o, € O([n]) with A, = diag(a’',a? ,...,afc’“). Then
<pB on O([n}) if and only if Ag = diag(Bi,...,Bx) where for each i,
( ) Bi= diag(bzlm“ s i by ),
( ) mzl +mig+ -+ mit, = ti,
(111) b1 <bo<--- < b1t1 < < b <bgg <0 < bktk € [n], and
(IV) a; € {b117 bl27 (RS biti}'

Remark 3.6. All constant maps are minimal on (O([n]), <). The identity map
is the maximum element on (7'([n]), <) but not on (O([n]), %).

To describe the maximal element of O([n]), we prove the following proposi-
tion.

Proposition 3.7. Let a € O([n]) with A, = diag(al',a¥?,...,a}*). Then a is
not mazimal on O([n]) if and only if one of the following statements holds.
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(1) t;>1and aj41 —a;—1 > 2 fori€{2,...,k—1}.
(2)t1 >1 and az —1 > 1.
(3)ty >1 andn —ap—1 > 1.

Proof. Suppose (1) holds. Let 1 < ¢ < k besuch that t; > 1 and a;41—a;—1 > 2.
Then there is ¢; € [n], either ¢; € [a; = a;41] or ¢; € [a;—1 — a;]. Without loss
of generality, we assume a; < ¢; < a;41. Define
A = diag(al',a%?, ... ,afi,cz" ,afﬁf,... Lagk),

where t,t/ > 0 and ¢} + ¢/ = t,. By Theorem 3.5, we have o < (4 on O([n]).
By using a similar technique, « is not maximal on O([n]) if (2) or (3) holds.

Conversely, assume that « is not maximal on O([n]). We directly obtain the
result from the conditions of Theorem 3.5. (]

Observe that the map (1,1, 3,4) satisfies the condition 2 in Proposition 3.7.
Then (1,1,3,4) is not maximal on O([4]).

Remark 3.8. Let G be the set of all finite sequences of positive integers. We
define a partial order < on & as follows:
For any a,b € & with a = (a1,...,a,) and b = (b1, be,...,by),

a <b <  3Ja strictly increasing function 6 : [m] — [n] such that
ai =b1+---+b(1)9 and
a; = b(i,1)9+1 + -+ b(i)g for all i > 2,
then we call < the block partitions order on &.

Using Theorem 3.5 and the poset (&, <), it gives us some necessary condi-
tions when two transformations are being compared.

Corollary 3.9. If a < 8 on O([n]), then rana C ran 8 and 7, I 7mg on 6.

The converse does not hold. For example, « = (4,4,4,5,5) and 8 =
(1,1,1,4,5) are incomparable under < on O([4]) but 7o, = (3,2)<4(3,1,1) = g
on G.

In next section, the poset (&, <) is a useful tool to understand the structure
of the poset (O([n]), X).

4. Graded posets

Given any poset (P, <) and for z,y € P, x is said to be covered by y if z < y
and there is no z € P such that < z < y and we let Cp(y) stands for the set
of all elements in P which is covered by y.

The length of a finite chain C, denoted [(C), is |C| — 1. The rank of a finite
poset P is defined to be the maximum length of chains of P. The poset P
is weakly graded if there exists a rank function tk : P — Ny such that (i)
(x)rk = 0 if z is minimal in P, and (ii) (x)rk = (y)rk —1if z € Cp(y). A
weakly poset P is called strongly graded if every maximal chain of P has the
same length.
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A subposet @ of a poset P is called a copy of (i+j) if @ is isomorphic to
the disjoint union of two chains of length i — 1 and 7 — 1. If P contains no copy
of (i+j), we say that P is (i + j)-avoiding.

Remark 4.1. For n € N, the partitions of n, denoted by P,, is the subset of &
which contains all nonincreasing sequence. Under the dominance order < (or
majorization order) on P, in the sense that

ar+as+---+ap <b +by+---+by forall k,

we observe that (2,2,1) < (3,1,1) on (Ps, <) whereas (2,2,1) and (3,1,1)
are incomparable on (&, <). It was shown in [2,5], that (P,, <) is not weakly
graded when n > 7.

(1,1,1,1,1,1)
7
@
(6,1) (2,1,1,1,1,1)
(.2) 4
’ (3,1,1,1,1) (2,2,1,1,1)
~
AR
TTwaq 3201 @L1) (2221
/7
(3,3,1) \ o\
\ 1,1,1,1) (3.3/1)  (3,2,2) (5,1,1) __ (4,2,1)

1T (1)
(2,2,1,1,1)
(2 RER! 1) (B) On (Pr,9)
(171,1\,1,1,1,1)

(A) On (Pr, k)

FIGURE 3. (P7,<) is not weakly graded and (Pr,<) is
strongly graded.

For n € N, we denote

Po={a=(a1,..) €6 : Y a=a+ - =n}

Note that each a € 9B, can be viewed as an equivalence class of a € O([n]),
given by 7, = a. To study the poset (O([n]), <), we first show that (P, Q) is
strongly graded. The following lemma is needed.

Lemma 4.2. Fora = (a1,as,...,an,) € (6,<), suppose that a is not minimal.
Then for any b € Cs(a), there exists j € N such that aj,a;41 # 0 and b =
(a1,.. . aj-1,a5 + aji1,a542,...).
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Proof. Let a = (ai,a2,...,am),b = (b1,b2,...,b,) € &. Suppose a is not
minimal and b < a. Then there is 0 : [n] — [m] a strictly increasing function
such that by = a1 + -+ + a@ye and b; = ag_1)941 + -+ + a)e for i > 1.
Assume that b # a. We have 0 is not the identity function. Suppose there are
1< g1 <jg € N such that (]1)9 — (]1 — 1)9 > 2 and (]2)9 — (]2 — ].)9 > 2.
It follows that bj, = agj,—1)p41 + - + ag,)e and bj, = a@j,—1)p4+1 + -+ +
A(j5)0- Let ¢ = (by,..., bj,—1,b5, — Q(51)05 A(j1)05 bji41s-v-1bjy, . ) # b, Itis
clear that b < ¢ < a with ¢ # a. These imply that b ¢ Cg(a). Next, if

b = (al, ceey Q1,05 F Qi1 F Qo+ F Ak, Qi - ) for kK > 2, then
b<(ay,...,a;-1,a; + aj+1,a42,a5+3,...) <a, that is, b ¢ Cs(a). Hence, the
lemma is proved. O

Theorem 4.3. For n € N, the posets (B, Q) and (P, ) are strongly graded
of rank n — 1.

Proof. Define rk : 3,, — Ny by (a)rk = k£ — 1 where a = (a1, as,...,a;) € Pan.
By applying Lemma 4.2, rk is the rank function. (I

The following proposition is directly obtained from Theorem 3.5 and Lemma
4.2.

Proposition 4.4. For B € O([n]) with Ag = diag(b}*,b%?,...,bi), if a €
O([n]) and o is covered by B, then 35 € {1,...,k — 1} such that

Ao = diag(By', b5, (b  bjn) T OB,

where b; * bj 1 is either b; or bji1.

Proposition 4.5. For 0 < k < n, the poset (O([n]), <) has a mazimal chain

C with I(C) = k.

Proof. Suppose that n > 2. Fori € {1,...,n—2}, welet a; = (n—14,1,...,1) €
——

1 copies
PB,,. Define an order-preserving map w; on [n] which 7, = a; by

wi={(1,...,1,2,241,...,24+ (i —1)).
~——
n—i copies
We observe that A, = diag(1"%,2,2+1,...,2+ (i — 1)). By using Propo-
sition 3.7, it follows that w; is a maximal element on (O([n]),<). Applying

Proposition 4.4, the length of all maximal chains having w; as the maximum
element is i. 0

As a consequence of Proposition 4.5, we have the following result.

Theorem 4.6. For n € N with n > 2, the poset (O([n]), <) is weakly graded
but not strongly graded.
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Remark 4.7. Tt was shown in [8] that the cardinality of £(O([n])), the set of
all idempotents of O([n]), is Fa, (the alternate Fibonacci number given by
Fy = F5, = 1). In Fig. 4, we list all elements of £(O([5])) and exhibit some
maximal chains of length 4 in £(O([5])) such as (1,1,1,1,1) < (1,3,3,3,3) <
(1,3,3,3,5) < (1,3,3,4,5) < (1,2,3,4,5).

;2,3,4,5)

(1
(2,2,3, .2,2,4,5Y1,3,3,4,5Y1,2,3,3,5(1,2,4,4, ,3,4,4)
(1,1,3,45) //

(1,2,3,5,5)

(1/2,2,2,2)(1,3,3,3,3)(1,4,4,4,4)1,5,5,5,5Y1,1,1,1,5)2,2,2,2,5)
(3,3,3,3,5)(4,4,4,4, %) (1,83,3,3) (1,1,4,4,4)(1,1,5,5,5) (2,2, 3,3,3)(2,2,4,4, 4)
<2’ 27575 5 17171’ 7 1717 17 75> <2’ 2727474> <27 27 2’ 575><3’ 3’ 37474> <3’ 3737 57 5>

(1,1,1,1,1%(2,2,2,2,2)(3,3,3,3,3)(4,4,4,4,4)(5,5,5,5, 5)

FIGURE 4. All idempotent elements of O([5]).

Proposition 4.8. Forn € N, the following statements hold.
(1) The poset E(O([n])) is strongly graded of rank n — 1.
(2) The number of all mazimal chains of £(O([n])) is 2" 1(n — 1)L

Proof. For (1), it follows from Proposition 4.4. Next, we let 5 € £(O([n]))
with Ag = diag(b}!, b2, .. .,b}i’“). Since 8 = 2, we have that by € [1 — t1],
bp €n—tr+1—n]andeach 0 <l <k, b; € [ZézltiJrl — Z§=1ti+tl+1].
Using Proposition 4.4 and applying the diagram in Fig. 4, we obtain that
|Ceoqm))(B)] = 2(k —1). As the identity map is the maximum element on
E(O([n])), it follows that there are 2(n—1)-2(n—2)-2(n—3)---2(n—(n—1))
chains of £(O([n])) having length n — 1. O

Proposition 4.9. For i > 3, the poset (O([n]), <) is weakly graded (i+ 1)-

avoiding if n < i.

Proof. As in the proof of Proposition 4.5, we consider a maximal element

w; = (1,...,1,2). Next, we choose a chain C' of £(O([n])) with I(C) =
——

n—1 copies
n — 1 and min(C) = (3,...,3). Since the set of all lower bounds of w; is
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{(1,...,1),(2,...,2)}, it follows that (O([n]),=<) is not an (n+ 1)-avoiding
poset. O

Remark 4.10. A map a € T([n]) is called regressive if za < z for all z € [n].
We denote R([n]) the subsemigroup of T'([n]) of all regressive maps. In [10],
Laradji and Umar proved that the cardinality of the semigroup O([n]) NR([n]),
denoted by C([n]), is —= (27).

n+1
(1,2, 3 4)
(1,1,2,3) (1,1,2,4) (1,2,2,3) (1233 (1,2,2,4 (1,1,3,4)
<LLW 1,1,2)
<1 1 1, 1>
(a) On C([4])
(1,2,3)
(1,1,3) (1,1,2) (1,2,2)

1,171
(B) On R([3])

FIGURE 5. The poset (C([4]), <) is (4 4+ 1)-avoiding and the
poset (R([3]), %) is (8 4+ 1)-avoiding.

Under the natural partial ordering =<, the constant map (1,...,1) is the
minimum element on C([n]) and R([n]). Then the following proposition is
clear.

Proposition 4.11. The following statements hold.
(1) The poset (C([n]), %) is (n+ 1)-avoiding.
(2) The poset (R([n]), <) is (n + 1)-avoiding.

Remark 4.12. For a € O([n]), let O,,(1+ «) be the collections of copies (i+ 1)

in O([n]) which « is incomparable to all members of a chain of length i — 1.

Note that we define R,,(i+ «) and C, (i + «) in a similar way. We observe that
1. |03(3 + <27373>)| =3, ‘03(2 + <273a3>)| =9.
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1,2))] 2))|
3. [Ca(4+(1,1,1,2))| = 0, |c4(3 < 1, ,2>) 6, [C4(2+(1,1,1,2))] = 18.

Question. What is a formula for |S, (i + «)| when « is maximal in S([n]),
where S is O, R, or C?
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