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ON g(x)-INVO CLEAN RINGS

MOURAD EL MAALMI AND HAKIMA MOUANIS

ABSTRACT. An element in a ring R with identity is called invo-clean if
it is the sum of an idempotent and an involution and R is called invo-
clean if every element of R is invo-clean. Let C'(R) be the center of a
ring R and g(x) be a fixed polynomial in C'(R)[z]. We introduce the new
notion of g(z)-invo clean. R is called g(z)-invo if every element in R is
a sum of an involution and a root of g(x). In this paper, we investigate
many properties and examples of g(z)-invo clean rings. Moreover, we
characterize invo-clean as g(z)-invo clean rings where g(z) = (z—a)(z—b),
a,b € C(R) and b — a € Inv(R). Finally, some classes of g(z)-invo clean
rings are discussed.

1. Introduction and preliminaries

Everywhere in the text of the current paper, all our rings R are assumed to
be associative, containing the identity element 1, which in general differs from
the zero element 0. As usual, for such a ring R, the symbol U(R) stands for
the group of units, Inv(R) for the set of all involutions (= square roots of 1),
Id(R) for the set of all idempotents and Nil(R) for the set of all nilpotents.
Following Han and Nicholson [14], an element r € R is called clean if r = u+e
for some u € U(R) and e € Id(R). A ring R is called clean if every element of
R is clean. The notion of clean rings was first introduced by Nicholson [17] in
1977 in his study of lifting idempotents and exchange rings. Since then, some
stronger concepts have been considered (e.g. uniquely clean, strongly clean and
some special clean rings), see [4,7,18,20-23], as well as some weaker ones (e.g.
almost clean and weakly clean rings), see [1]. Recently, in 2017, Danchev [9]
studied the following special case of cleanness, namely, invo-clean rings. They
are rings in which every element is a sum of an idempotent element and an
involution element.

Let C(R) denotes the center of a ring R and g(z) be a polynomial in C(R)[z].
Then following Camillo and Simén [5], R is called g(z)-clean if for each r € R,
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r = u+ s where u € U(R) and g(s) = 0. Of course (2% — x)-clean rings are
precisely the clean rings.

Nicholson and Zhou [19] proved that if g(z) € (x — a)(z — b)C(R)[z] with
a,b € C(R) and b,b —a € U(R) and gpM is a semisimple left R-module, then
End(rM) is g(z)-clean. Recently, Fan and Yang [13], studied more properties
of g(x)-clean rings. Among many results, they prove that if b — a € U(R) with
a,b € C(R), then R is a clean ring if and only if R is (x — a)(x — b)-clean.

This work is motivated by the notions of g(x)-cleanness and invo-cleanness
and we will combine them into a new concept. In this way, we define and study
g(z)-invo clean rings as a special class of g(z)-clean rings. For a ring R and
g(z) € C(R)[z], an element r € R is called g(z)-invo clean if r = v + s for
some v € Inv(R) and g(s) = 0. Moreover, R is called g(x)-invo clean if every
element in R is g(z)-invo clean.

The paper is organized as follows: In Section 1, we already have given the
main definitions of the used concepts. In Section 2, we define g(z)-invo clean
rings and determine the relation between g(z)-invo clean rings and invo-clean
rings; in Section 3, some general properties of g(x)-invo clean rings are given;
and in Section 4, for a commutative ring A, we give a characterization for the
amalgamation of A with B along J with respect to f (denoted by A </ .J)
(see for instance [11]) to be g(x)-invo clean. Also, we consider the idealization
A x E of any A-module E and prove that A < E is g(z)-invo clean ring if and
only if A is an invo-clean and 2E = 0. In Section 5, some classes of g(z)-invo
clean rings are discussed.

2. g(x)-invo clean rings

In this section, we firstly define g(x)-invo clean elements and g(x)-invo clean
rings. We study some of the basic properties of g(z)-invo clean rings. Moreover,
we give some necessarily examples.

Definition. Let R be a ring and let g(z) be a fixed polynomial in C(R)[z].
An element r € R is called g(x)-invo clean if r = v + s where g(s) =0 and v is
an involution of R. We say that R is g(x)-invo clean if every element in R is
g(x)-invo clean.

Obviously, g(z)-invo clean rings are g(x)-clean. In contrast, Z7 is clean but
is not invo-clean. Since (2% — x)-invo clean rings are precisely the invo-clean
rings, we can say that for g(x) = 22 — z, the ring Z7 is g(x)-clean, but it is not
g(x)-invo clean.

In the other hand, invo-clean rings are exactly (22 — x)-invo clean. However,
there are g(x)-invo clean rings which are not invo-clean and vice versa:

Example 2.1. Let R = Z5 and g(z) = 2° + 42 € C(R)[z]. Then:

(1) R is not invo-clean (In fact, the ring R has involutions {1, 4}, idempo-
tents {0,1}). Since the element 3 of R cannot be expressed as sum of
an idempotent and an involution, then R is not invo-clean.
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(2) R is g(x)-invo clean.

Example 2.2. Let R be a Boolean ring with the number of elements |R| > 2
and ¢ € R with ¢ € R\{0,1}. Define g(x) = (z + 1)(x 4 ¢). Then:

(1) R is invo-clean.

(2) R is not g(z)-invo clean.

Proof. (1) Since e = (2¢ —1) + (1 —e) with (2e —1)2 =1 and (1—¢€)? =1 —e,
then any idempotent is an invo-clean element. Thus, R is invo-clean.

(2) Because if ¢ = v 4 s where v € Inv(R) and g(s) = 0, then it must be
that v =1 and s = ¢ — v. But, clearly, g(¢c — 1) # 0. Hence, R is not g(z)-invo
clean. ]

However, for some type of polynomials, invo-cleanness and g(x)-invo clean-
ness are equivalent.

Theorem 2.3. Let R be a ring and g(z) € (x — a)(z — b)C(R)[x] where a,b €
C(R). Then the following hold:
(1) R is invo-clean and (b—a) € Inv(R) if and only if R is (x —a)(x —b)-
invo clean.
(2) If R is invo-clean and (b — a) € Inv(R), then R is g(x)-invo clean.

Proof. (1) Suppose r € R. Since R is g(x)-invo clean, there exist an involution
vy and a root sy of g(x) such that b = v1+s1. Since g(s1) = (s1—a)(s1—b) =0,
we have s; = a. This implies that b — a is involution. Again by hypothesis,
there exist an involution ve and a root s5 of g(z) such that (b—a)r+a = vo+$s.
Set e = (b—a)(s2—a), i.e., s3 = (b—a)e+a. Then we get r = e+ (b—a)vs. Note
that g(s2) = (sa —a)(sa —b) = (b—a)e[(b—a)e+a—b] = (b—a)?(e? —¢e) =0
since b — a € C(R). Since (b — a) € Inv(R), we have e? = e, as required.

Conversely, for any r € R, by hypothesis we may write (b—a)(r—a) = e+wv
where e? = e € R and v € Inv(R). Thus, we have r = [(b—a)e +a] + (b— a)v.
Note that (b — a)v is an involution since (b — a) € Inv(R). Now we have
g((b—a)e+a) = (b —a)e[(b—a)e+a—b = (b—a)?e(e —1) = 0, and so
(b—a)e+ ais a root of g(x). This completes the proof.

(2) This follows from (1). O

In fact, the condition a,b € C(R) in Theorem 2.3 can be replaced by (b—a) €
C(R).

Corollary 2.4. Let R be a ring. Then R is invo-clean if and only if R is
(2% + x)-invo clean.

Proof. This follows from Theorem 2.3 when a =0 and b = —1. ([

Remark 2.5. The equivalence of (22 + z)-invo clean and invo-clean is a global
property. That is, it holds for a ring R but it may fail for a single element. For
example, 1+ 1 = 2 € Z is invo-clean but it is not (22 + z)-invo clean in Z since
7 has only two involutions 1 and —1.
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In [6, Proposition 10], Camillo and Yu showed that if 2 € U(R), then R is
clean if and only if every element of R is the sum of a unit and a square root
of 1. Here we have a similar result for invo-clean rings.

Corollary 2.6. A ring R is invo-clean and 2 € Inv(R) if and only if every
element of R is the sum of an involution and a square Toot of 1.

Proof. Let g(x) = (z +1)(x — 1) = 2? — 1. Note that the condition that every
element of R is the sum of an involution and a square root of 1 is equivalent to
R being g(z)-invo clean. Hence by Theorem 2.3, the proof is immediate. O

Theorem 2.7. Let R be a ring, n € N and a,b € R. Then R is (ax®" —bx)-invo
clean if and only if R is (ax®® + bx)-invo clean.

Proof. Suppose R is (ax®" — bx)-invo clean. Then for any r € R, —1 = v + s
where (as?"—bs) = 0 and v € Inv(R). Sor = (—v)+(—s) where (—v) € Inv(R)
and a(—s)?" + b(—s) = 0. Hence, r is (ax®" + bz)-invo clean. Therefore, R is
(ax®™ 4 bx)-invo clean. Now suppose R is (az®™ + bz)-invo clean. Let r € R.
Then there exist s and v such that —r = v+s, (as*™ +bs) = 0 and v € Inv(R).
So r = (—v) 4+ (—s) and as®™ —bs = 0 is satisfied. Hence, R is (az®" — bx)-invo
clean. O

For example, we conclude that (22 + x)-invo clean rings and (2? — z)-invo
clean rings are equivalent to invo-clean rings.

Remark 2.8. The equivalence in Theorem 2.7 does not hold for odd powers. For
example, the ring Z3 is clearly a (23 — x)-invo clean which is not (23 + x)-invo
clean.

Lemma 2.9. Let R be a ring and e € Id(R). Then Inv(eRe) = (eRe) N (€ +
Inv(R)), wheree =1 —e.

Proof. (C) If v € Inv(eRe), then v? = e. Since the product of v with € is zero,
(v—e)?=e+e=1,and so (v — &) € Inv(R). Then v € € + Inv(R).

(D) If a = e+ v € eRe with v € Inv(R), then a — & = v, and hence
(a—eé)? = 1. Thus, (ea — e€)? = e, and so ea? = e. Therefore a® = e, and then
a € Inv(eRe). O

For invo-clean rings, the author in [10, Theorem 2.2] proved that if R is an
invo-clean ring and e? = e, then the corner ring eRe is an invo-clean ring. For
g(x)-invo clean rings, we have the following result:

Theorem 2.10. Let R be an (x — a)(x — b)-invo clean ring with a,b € C(R).
Then for any e* = e € R, eRe is (z — ea)(z — eb)-invo clean. In particular,
if g(z) € (x — ea)(x — eb) € C(R)[x] and R is (x — a)(x — b)-invo clean with
a,b € C(R), then eRe is g(x)-invo clean.

Proof. By Theorem 2.3 R is (z—a)(z—b)-invo clean if and only if R is invo-clean
and (b—a) € Inv(R). If R is invo-clean, then eRe is invo-clean by [10, Theorem
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2.2]. Again by Theorem 2.3 and Lemma 2.9, eRe is (z — ea)(x — eb)-invo
clean. 0

Let R be a ring and let g(x) be a fixed polynomial in C(R)[z]. An element
r € R is called g(z)-nil clean if r = b+ s where g(s) = 0 and b is a nilpotent of
R. Then R is called g(z)-nil clean if every element in R is g(z)-nil clean [15].
Thus, we have the following Proposition.

Proposition 2.11. Let R be a ring and g(z) € C(R)[z]. If R is a g(zx)-invo
clean ring with 2 € Nil(R), then R is g(1 — x)-nil clean with bounded index of
nilpotence.

Proof. Given r € R, we write r = v + s, where v> = 1 and g(s) = 0. But
(14v)? = 2+2v = 2(1+v), and hence (1+v)? = 2(1+v)? = 22(1+v), etc. By
induction we derive that (1+v)"*! = 2"(1+4v) for all n € N. Thus (1+v)! =0
for some appropriate natural ¢ (since 2 € Nil(R)), that is, (1 4+ v) € Nil(R).
Furthermore, one may write that » = (v+1) — (1 —s), whence R is g(1 — z)-nil
clean, as claimed. Il

Corollary 2.12. If R is an invo-clean ring with 2 € Nil(R), then R is nil
clean with bounded index of nilpotence.

Proof. Since invo-clean (resp. nil clean) is (22 —x)-invo clean (resp. (2% —z)-nil

clean). O

3. General properties of g(x)-invo clean rings

Let R and S be two rings. Consider the ring homomorphism ¢ : C(R) —
C(S) with ¥(1g) = 1s. Then ¢ induces a map ¢’ from C(R)[z] to C(S)[x]
such that for g(z) = Y7, aiz’ € C(R)[z], gy (z) :=¢'(g(z)) = Y1y ¥(a;)z" €
C(S)[x]. We should note that if n € Z, then ¢)(n) = ¢(1+---+1) = ny(1) = n.
So, if g(x) € Z[z], then gy(x) = g(z).

Next, we give some properties of the class of g(x)-invo clean rings. We start
by a simple result.

Proposition 3.1. Let R and S be two rings, ¥ : R — S be a ring epimorphism
and g(z) = Y. ja;zt € C(R)[z]. If R is g(x)-invo clean, then S is gy(x)-invo
clean.

Proof. Let g(z) = > i, a;z" € C(R)[z] and consider gy (z) := Y7, ¢(a;)z’ €
C(S)[z]. For every a € S, there exists r € R such that ¢(r) = a. Since R
is g(z)-invo clean, there exist s € R and v € Inv(R) such that r = v + s and
g(s) = 0. Soa = () = U(v+s) = (o) + P(s) with H(v) € Inu(S)
and gu((s) = Y1 b(a)(B) = Yo v(a)bls) — Yy blass’) =
(X g ais') =1¥(g(s)) = ¥(0) = 0. Therefore, S is gy (z)-invo clean. O

Now by Proposition 3.1, the following holds:
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Corollary 3.2. If R is g(z)-invo clean, then for any ideal I of R, R/I is

g(z)-invo clean where g(x) € C(R/I)[x].

Proof. Let ¢ : R — R/I be the canonical epimorphism. Note that if « € C(R),
then a € C(R/I), and so the result follows from Proposition 3.1. O

Proposition 3.3. Let Ry, Rs,..., R, be rings and g(x) € Z[z]. Then
R := T[] R; is g(x)-invo clean if and only if R; is g(x)-invo clean for all i €
i=1
{1,2,...,n}.
Proof. =): Let R be g(x)-invo clean. Define 7; : H R; = R; by mj((ai)i) = aj.
i=1

Since for all i € {1,2,...,n}, 7, is a ring epimorphism, so by Corollary 3.2, for
every i € {1,2,...,n}, R; is g(z)-invo clean.

«<): Let (z1,%9,...,2,) € |[ Ri. For each i, write z; = v; + s; where
i=1

v; € Inv(R;), g(s;) =0. Let v = (v1,v9,...,v,) and s = (s1, S2,...,Sn). Then

it is clear that v € R and ¢(s) = 0. Therefore, R is g(x)-invo clean. O

Let R be a ring with an identity and S be a ring (not necessary unitary)
which is an (R, R)-bimodule such that (s1s2)a = s1(s2a), a(s182) = (as1)s2 and
(s1a)s2 = s1(asz) for all a € R, s1, 52 € S. The ideal-extension I(R, S) of R by
S is defined as the additive abelian group I(R,S) = R® S with multiplication
(a1,51)(ag, s2) = (araz,a182 + s1as + s1s2). If g(z) = (ag, so) + (a1,s1)x +
o+ (an, sp)x™ € C(I(R, S))[z], then clearly gr(z) = ap + a1z + -+ + apz™ €
C(R)[x].

Proposition 3.4. Let R and S be as above. If I(R,S) is g(x)-invo clean, then
R is gr(x)-invo clean.

Proof. If we define ur : I(R,S) — R by pr(r,s) = r, then ug is a ring
epimorphism. The result follows by Corollary 3.2. (]

Let R be a ring and o : R — R be a ring endomorphism. By R[[z, o]] we
denote the ring of skew formal power series over R, that is all formal power
series in x with coefficients from R with multiplication defined by zr = a(r)z
for all » € R. In particular, R[[z]] = R[[z, 1r]] is the ring of formal power series
over R. The skew polynomial ring R[x, o] can be defined in an analogous way.
One can prove that R[[z, «]] = I(R, (x)) where (z) is the ideal generated by x.

Corollary 3.5. Let R be a ring and o : R — R be a ring endomorphism. If
R[[z,a]] (or in particular R[[z]]) is g(x)-invo clean, then R is g, (z)-invo clean
where p : R[[x,a]] = R is defined by u(f) = f(0).

In general, the ring of polynomials R[x] over a ring R is not g(x)-clean. This
is also true for commutative g(z)-invo clean rings.
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Lemma 3.6. Let R be a commutative ring and f = Y i a;x* € R[z] be an
involution element. Then ag is an involution and a; is nilpotent for each .

Proof. Since f is involution, f? = 1. So a3 = 1. Therefore, a is an involution.
Now, to end the proof, it is enough to show that for each prime ideal P of R;
every a; € P. Since P is prime, thus (R/P)[z] is an integral domain. Define
¢ : R[z] —» (R/P)[z] by (> ,aiz’) = Y1 (a; + P)a’. Clearly, ¢ is an
epimorphism. But ¢(f)¢(f) = ¢(1), and so deg(e(f)e(f)) = deg(e(1)). So,
deg(p(f)) =0. Thus, a1 + P=as+ P =---=a, + P = P, asrequired. O

Theorem 3.7. If R is a commutative ring, then R[z] is not invo-clean (hence
not (x% — x)-invo clean).

Proof. We show that z is not invo-clean in R[x]. Suppose that = v+e, where
v € Inv(R[z]) and e € Id(Rz]). Since Id(R) = Id(R[z]) and z = v + e, so
x — e is an involution. Hence, by Lemma 3.6, 1 should be nilpotent, which is a
contradiction. ]

A Morita context (A, B,V, W, 1, ¢) consists of two rings A, B, two bimod-
ules 2AVg, pWa and a pair of bimodule homomorphisms ¢ : Vg W — A
and ¢ : W ®4 V — B, such that ¢(v @ w)v = vop(w @ v'), d(w @ v)w' =
wyp(v ® w'). With such a Morita context we associate the ring T = [ %] =
{lws]:a€ Abe B,veV,we W} under the usual matrix addition and mul-
tiplication defined as:

{a v] [a’ v’] _ {aa’er(v@w’) av’ + vb/

w b| |w Y wa’ + bw' Pplwev')+bb|"
We call T a Morita context ring. If g(x) = [0 10 |+ [ 41 | a++ [0 or ] 2™ €

C(T)[z], then clearly ga(z) = ag + a1z + - - - + apz™ € C(A)[x] and gp(x) =
bo +bix+ -+ by € C(B)[x].

Proposition 3.8. Let T = [ %] be a Morita context with 1, ¢ = 0. If T is
g(x)-invo clean, then A is ga(x)-invo clean and B is gg(x)-invo clean.

Proof. Assume that T is g(x)-invo clean with ¢, ¢ = 0. Let I = [3 %] and

J = [{# %]. Then clearly I and J are ideals of T" and moreover, T/I = A
and T'/J = B. Tt follows by Corollary 3.2 that A is ga(z)-invo clean and B is
g5 (x)-invo clean. O

Corollary 3.9. Let A, B be two rings and M be an (A, B)-bimodule. Let
T= [6‘ M1 be the formal triangular matriz ring. If T is g(z)-invo clean, then
A is ga(zx)-invo clean and B is gg(x)-invo clean.

In the following proposition, we consider a particular case of formal trian-
gular matrix rings. Let R be a commutative ring and M an R-module. The
trivial extension of R by M is the (commutative) ring:

R(M):{[g ﬂ :reR,meM}
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with the usual matrix addition and multiplication. We note that if [§"7] €
Inv(R(M)), then clearly r € Inv(R). We recall that R naturally embeds into
R(M) via r — [4?]. Thus any polynomial g(z) = >_I ,a;z" € R[z] can be
written as g(z) =37 [ » ] 2" € R(M)[z] and conversely.

Proposition 3.10. Let R be a commutative ring, M an R-module and 2M = 0.
Then the idealization R(M) of R and M is g(x)-invo clean if and only if R is
g(x)-invo clean.

Proof. (=) Note that R ~ R(M)/M where M = {[37%]:m € M}. Hence R
is g(z)-invo clean by Corollary 3.2.

<) Let g(z) = 31 ja;2* € R[z] and r € R. Since R is g(z)-invo clean,
we have r = v + s, where v € Inv(R) and g(s) = 0. Then for m € M,

(6™ =18"14159], where [§ 3] € Inu(R(M) (since 2M = 0). Moreover, we
have:
s 0 1 0 s 0 s2 0 s 0
L i R (O e [ R (]
_ ap + a1 + ass® + - - -+ a,s” 0
- 0 ap 4+ a1s+ ass® + -+ -+ a,s”
oo
|0 of°
Therefore, R(M) is g(z)-invo clean. O

4. (2 — x)-invo clean rings

Let A and B be two commutatives rings, let J be an ideal of B and let
f A — B be aring homomorphism. The amalgamation of A with B along J
with respect to f is defined as A >/ J = {(a, f(a)+7j) | a € A,j € J}. Ttis easy
to check that A o</ J is a subring of A x B (with the usual componentwise
operations). For more properties of A </ J, one can see [11,12]. In the
following theorem, we investigate the invo-cleanness (hence the (2% — z)-invo
cleanness) of A >/ J. Recall that a ring R is called invo-clean if every r € R
can be written as r = v + e, where v € Inv(R) and e € Id(R). If, in addition,
the existing idempotent e is unique, then R is called uniquely invo-clean.

Theorem 4.1. Let f: A — B be a ring homomorphism and J be an ideal of
B.

(1) If A< J is an invo-clean (resp., a uniquely invo-clean) ring, then A
is an invo-clean (resp., a uniquely invo-clean) ring and f(A)+ J is an
imvo-clean ring.

(2) Assume that f(Aif“] is uniquely invo-clean. Then A <! J is an invo-
clean ring if and only if A and f(A) + J are invo-clean rings.

Proof. (1) If A</ J is an invo-clean, we know by [11, Prop. 5.1] that A and
f(A)+J are homomorphic images of A >/ .J, and so by [9, Lemma 2.1], A and
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f(A) + J are invo-clean . Assume now that A >/ J is uniquely invo-clean and
consider v+e = v'+¢€’ where v,v" € Inv(A) and e, e’ € Id(A). Then (v, f(v))+
(e, 1(€)) = (¢, [()) + (¢/, f(¢')) and clearly (v, f(0)),(, (1)) € Tro(A o
7) and (e, £(€)), (¢/, f(e)) € 1d(A saf J). Thus, (v, f(v)) = (¢/, £(v')) and
(e, f(e)) = (¢, f(¢)). Hence v = v' and e = ¢’. Consequently, A is uniquely
invo-clean.

(2) If A </ J is invo-clean, then so A and f(A) + J by (1). Conversely,
assume that A and f(A) 4+ J are invo-clean rings and consider (a,j) € A x J.
Since A is invo-clean, we write that a = v 4+ e for some v € Inv(A) and
e € Id(A). Furthermore, since f(A) + J is invo-clean, f(a) +j = (f(z) +
kE)+ (f(y) +1) with (f(z) + k) and (f(y) + 1) are respectively involution and

idempotent element of f(A) + J. It is clear that f(z) = f(z) + k (vesp. f(v))

and f(y) = f(y) +1 (resp. f(e)) are respectively involution and idempotent

element of f(AiJHJ, and we have f(a) = f(v) + f(e) = f(z) + f(y). Thus,

f(v) = f(z) and f(e) = f(y) since FAET s uniquely invo-clean. Consider
k,lI' € Jsuchthat f(z) = f(v)+k" and f(y) = f(e)+I'. We have, (a, f(a)+j) =
(v, f(v) + K +k)+ (e, f(e) + ' + 1), and it is clear that (v, f(v) + k' + k) €
Inv(A >af J) and (e, f(e) +1' +1) € Id(A >/ J). Consequently, A </ J is
invo-clean. 0

<

Remark 4.2. Let f: A — B be a ring homomorphism and J an ideal of B.

(1) If B = J, we have A/ J = A x B. Hence A >/ J is invo-clean if and
only if A and B are invo-clean (by [9, Proposition 2.13]).

(2) If f71(J) = {0}, we have A >/ J = f(A) + J by [11, Proposition
5.1(3)]. Hence, A >/ J is invo-clean if and only if f(A) + J is invo-
clean.

In a duplication ring, we obtain:

Corollary 4.3. Let A be a ring and I an ideal such that A/I is an uniquely
inwvo-clean. Then A< 1 is invo-clean if and only if so is A.

Proof. In this case, we have f(A)+I = A+I = A. Thus Theorem 4.1 completes
the proof. i

Proposition 4.4. Let f : A — B be a ring homomorphism and let J be an
ideal of B such that J C Id(B). Then A <! J is invo-clean if and only if A is
tnvo-clean.

Proof. Let (a,j) € Ax J. Hence there exist an idempotent e and an involution
v such that a = v + e (since A is invo-clean). Hence (a, f(a) + j) = (v, f(v)) +
(e, f(e) + j), and then for all j € J, we have 2j = 0 and j2 = j (since
J C Id(B)). Therefore, (f(e) +j)* = (f(e))* +2jf(e) + j° = (f(e) + j), and
so (a, f(a) +7) is an invo-clean element of A </ .J. Thus A </ .J is invo-clean.
The converse implication is clear. (I
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For more examples of invo-clean rings, we consider the method of idealiza-
tion. Let A be a commutative ring and E an A-module. Nagata [16] introduced
the idealization A < F of A and E. The idealization of A and E (or trivial
extension ring of A by F) is the ring A « E with multiplication given by
(a1,e1)(ag, e2) = (araz,a1es + azer). This construction has been extensively
studied and has many applications in different contexts, see [2, 3].

Lemma 4.5. If A is an invo-clean ring, then any q € Nil(A) satisfies the
equation g% + 2¢ = 0.

Proof. If ¢ € Nil(A), write ¢ = v + e where v € Inv(A) and e € Id(A).
Thus (—v) = (—¢q) + e, where (—v) € Inv(A) and (—¢q) € Nil(A). Then by
[9, Corollary 2.6], we conclude that e = 1. Therefore ¢ = v + 1, and hence
2 +2¢=0. O

Proposition 4.6. Let A be a commutative ring, E an A-module and R :=
A «x E the trivial extension ring of A by E. Then R is invo-clean if and only
if A is invo-clean and 2E = 0.

Proof. (=) If A x E is invo-clean, then A =~ (A x F)/(0 x E) is invo-clean
by [9, Lemma 2.1]. On the other hand, let « € E. Then by Lemma 4.5
(0,2)% +2(0,2) = (0,0) (since (0,x) € Nil(A o E) and A o E is invo-clean),
which shows that 2z = 0. Hence 2E = 0.

(<) Let (a,z) € A x E and write a = v + e, where v € Inv(A) and
e € Id(A). Thus (a,z) = (v,z)+(e,0), and it is clear that (v,z) € Inv(A x E)
and (e,0) € Id(A < E). Consequently, A « FE is invo-clean. O

Clearly, invo-clean rings are clean rings. But in general, clean rings may not
be invo-clean. Then to enrich the literature with new example of clean ring
but not invo-clean, we propose the next example.

Example 4.7. Let A := Zs and let R := A & A be the trivial ring extension
of A by A. Then:

(1) By [8, Corollary 2.12], R is a clean ring since A is a clean ring.
(2) Since A is not invo-clean, R is not invo-clean by Proposition 4.6.

If G is a group and R is a ring, we denote the group ring over R by RG. If
RG is invo-clean, then R is invo-clean by [9, Lemma 2.1]. But it seems to be
difficult to characterize R and G for which RG is invo-clean in general. In the
following we will give some rings and groups such that RG is invo-clean.

Proposition 4.8. Let R be a ring where 2 € U(R) and G = {1, g} be a group
with two elements. Then RG is invo-clean if and only if R is invo-clean.

Proof. One direction is trivial.
Conversely, if R is invo-clean, since 2 is invertible, by [14, Proposition 3]
RG = R x R. Hence, RG is invo-clean by [9, Proposition 2.13]. O
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In the next proposition, we determine conditions under which the group ring
RG is invo-clean where G = C, the cyclic group of order n.

Proposition 4.9. Let R be a ring and 2 € U(R). Then, RCy is invo-clean if
and only if R is invo-clean.

Proof. As2 € U(R), RCy = Rx Rx R[x]/(z*+1) by Yi and Zhou [24, Lemma
3.3]. But as 2 € U(R), we have R[z]/(z? 4+ 1) = RC> = R x R. Therefore, the
claim follows. g

Proposition 4.10. If R is an invo-clean ring with 2 € U(R), then RCy. is
invo-clean for all k > 0.

Proof. We know that RCyx = (RC))C5. So it suffices to show that if RCo is
invo-clean. But RCj is invo-clean by Proposition 4.8, as required. (]

5. Unitly invo-clean rings

In this section, we explore and discuss the original notion of unitly invo-clean
rings stated in Problem 3 of [9].

Definition ([9]). A ring R is called unitly invo-clean if U(R) = Inv(R)+Id(R),
i.e., for each a € U(R), there exist v € Inv(R) and e € Id(R) such that
a=v+e.

Remark 5.1. Although homomorphic images of units, idempotents and invo-
lutions are again units, idempotents and involutions, respectively, it follows in
general that even an epimorphic image of a unitly invo-clean ring need not be
unitly invo-clean. For instance, the ring Z is unitly invo-clean, while Zjs is not.

However, the following is valid:

Proposition 5.2. Suppose that R is a ring with I C J(R). Then R/I is a
unitly invo-clean ring provided that R is a unitly invo-clean ring.

Proof. We have here I C J(R), which implies that U(R) — U(R/I) is sur-
jective. Hence if w = u+ I € U(R/I), then v € U(R) = Inv(R) + Id(R),
so that uw = v + e, where v € Inv(R) and e € Id(R). Thus w = u+ [

(v+I)+ (e+ 1) € Inv(R/I)+ Id(R/I), as needed. 5

Corollary 5.3. Let R be a ring. If R is a unitly invo-clean, then R[[z]]/(z™)
(n € N) is a unitly invo-clean.

Proof. Clearly, R[[z]]/(z") = {ao + a1z + -+ -+ ap—12" | ag,...,an—1}. Let
a : R[[z]]/(z™) — R be a morphism such that a(f) = f(0). It is easy to
check that « is an R-epimorphism and kera is a nil ideal of R, and therefore
the result follows from Proposition 5.2. O

The nil property of the Jacobson radical can be strengthened by the following
observation.
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Proposition 5.4. If R is a unitly invo-clean ring, then J(R) is nil with index
of nilpotence at most 3.

Proof. Let j € J(R). We write 14+ j = v+e, where v € Inv(R) and e € Id(R).
In both cases, since J(R) + U(R) = U(R), we derive that v —j =1 —e €
U(R)NId(R) = {1}, and hence e = 0. Thus j = v — 1 implies that j2 = —2j.
Consequently, j2 = —2;2, then j2 = 4j. Replacing j by 2j in the last equality,
we obtain 8j% = 8§ whence 8j(1 — j2) = 0. Since 1 —j2 € 1+ J(R) C U(R), it
follows that 8§ = 0. On the other hand, substituting j by 2j in j2 = —2j and
multiplying both sides of these two equalities by 4, we have 452 = —4j = —87,
i.e., 47 = 0. Finally, j3 =45 = 0. t

We now arrange to prove the following.

Proposition 5.5. If R is a unitly invo-clean ring with 2 € U(R), then Nil(R)
= J(R) = {0}.

Proof. Since in view of Proposition 5.4 it must be that J(R) C Nil(R), we
need to consider only nilpotent elements. To that aim, suppose ¢ € Nil(R).
Then 1+ ¢ € U(R). Write 1 + g = v + e, where v € Inv(R) and e € Id(R)
(since R is a unitly invo-clean ring). Thus v = ¢ + (1 — e). Appealing to
[11, Corollary 2.6], we conclude that e = 0. Therefore ¢ = v — 1, and hence
> =2—2v=—2(v—1) = —2¢. This leads to ¢(¢+2) = 0. Since ¢+2 € U(R),
we have ¢ = 0, as expected. (|

Proposition 5.6. Let R be a unitly invo-clean ring and 4 = 0. Then Z(R) is
a unitly invo-clean ring.

Proof. For any z € U(Z(R)) C U(R), write z = v + e, where v € Inv(R) and
e € Id(R). Tt follows by squaring that 22 — 2ze = 1 — e. Squaring again, we
deduce that z* = 1 — e, so that e = 1 — 2* € Z(R). We therefore infer that
v € Z(R), and hence z =v + e € Inv(Z(R)) + Id(Z(R)). O

Proposition 5.7. Suppose that R is a nil-clean ring. Then R is unitly invo-
clean if and only if any q € Nil(R) satisfies the equation ¢* + 2q = 0.

Proof. (=) As in proof of Proposition 5.5, we derive that ¢> = —2¢, and then
2 _
q“+2q=0.
(<) Given r € U(R), we write r = ¢ + e, where ¢ € Nil(R) and e € Id(R)
(since R is a nil-clean ring). Thus r = ¢+ e = (1 +¢g) — (1 — e). One checks
that (1+¢)2=¢*+2¢+1=1and (1 —e)2 =1 — e, as required. O

As an interesting consequence, we obtain the following one.

Corollary 5.8. Let R be a nil-clean ring of characteristic 2. Then R is unitly
invo-clean if and only if the index of nilpotence of R is 2.

Remark 5.9. In regard to the above statement, it is worth noticing that Zg
is both unitly invo-clean and nil-clean containing the element 2 of nilpotence
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index 3. However, it is readily seen that 2 satisfies the equality ¢ + 2¢ = 0
because 22 +2-2 =8 = 0.

Likewise, Z16 = Zo4 is a nil-clean ring which is not necessarily unitly invo-
clean (compare with Corollary 5.8). In fact, Z16 is indecomposable, that is, the
only idempotents are 0 and 1 as well as all involutions are 1, 7, 9 and 15. So,
the unit 5 cannot be represented as a sum of an involution and an idempotent,
as expected.

Proposition 5.10. If R is a unitly invo-clean ring with 3 € U(R), then 24 = 0.
In particular, 6 € Nil(R).

Proof. Write 3 = v 4 e, where v is an involution and e is an idempotent. Thus
(3 —v)? = 3 — v implies that 5v = 7, whence 24 = 0 by squaring both sides
of the equality. In addition, 63 = 216 = 24 -9 = 0, and hence 6 € Nil(R), as
asserted. O
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