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ON g(x)-INVO CLEAN RINGS

Mourad El Maalmi and Hakima Mouanis

Abstract. An element in a ring R with identity is called invo-clean if

it is the sum of an idempotent and an involution and R is called invo-

clean if every element of R is invo-clean. Let C(R) be the center of a
ring R and g(x) be a fixed polynomial in C(R)[x]. We introduce the new

notion of g(x)-invo clean. R is called g(x)-invo if every element in R is
a sum of an involution and a root of g(x). In this paper, we investigate

many properties and examples of g(x)-invo clean rings. Moreover, we

characterize invo-clean as g(x)-invo clean rings where g(x) = (x−a)(x−b),
a, b ∈ C(R) and b− a ∈ Inv(R). Finally, some classes of g(x)-invo clean

rings are discussed.

1. Introduction and preliminaries

Everywhere in the text of the current paper, all our rings R are assumed to
be associative, containing the identity element 1, which in general differs from
the zero element 0. As usual, for such a ring R, the symbol U(R) stands for
the group of units, Inv(R) for the set of all involutions (= square roots of 1),
Id(R) for the set of all idempotents and Nil(R) for the set of all nilpotents.
Following Han and Nicholson [14], an element r ∈ R is called clean if r = u+ e
for some u ∈ U(R) and e ∈ Id(R). A ring R is called clean if every element of
R is clean. The notion of clean rings was first introduced by Nicholson [17] in
1977 in his study of lifting idempotents and exchange rings. Since then, some
stronger concepts have been considered (e.g. uniquely clean, strongly clean and
some special clean rings), see [4,7,18,20–23], as well as some weaker ones (e.g.
almost clean and weakly clean rings), see [1]. Recently, in 2017, Danchev [9]
studied the following special case of cleanness, namely, invo-clean rings. They
are rings in which every element is a sum of an idempotent element and an
involution element.

Let C(R) denotes the center of a ring R and g(x) be a polynomial in C(R)[x].
Then following Camillo and Simón [5], R is called g(x)-clean if for each r ∈ R,
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r = u + s where u ∈ U(R) and g(s) = 0. Of course (x2 − x)-clean rings are
precisely the clean rings.

Nicholson and Zhou [19] proved that if g(x) ∈ (x − a)(x − b)C(R)[x] with
a, b ∈ C(R) and b, b − a ∈ U(R) and RM is a semisimple left R-module, then
End(RM) is g(x)-clean. Recently, Fan and Yang [13], studied more properties
of g(x)-clean rings. Among many results, they prove that if b− a ∈ U(R) with
a, b ∈ C(R), then R is a clean ring if and only if R is (x− a)(x− b)-clean.

This work is motivated by the notions of g(x)-cleanness and invo-cleanness
and we will combine them into a new concept. In this way, we define and study
g(x)-invo clean rings as a special class of g(x)-clean rings. For a ring R and
g(x) ∈ C(R)[x], an element r ∈ R is called g(x)-invo clean if r = v + s for
some v ∈ Inv(R) and g(s) = 0. Moreover, R is called g(x)-invo clean if every
element in R is g(x)-invo clean.

The paper is organized as follows: In Section 1, we already have given the
main definitions of the used concepts. In Section 2, we define g(x)-invo clean
rings and determine the relation between g(x)-invo clean rings and invo-clean
rings; in Section 3, some general properties of g(x)-invo clean rings are given;
and in Section 4, for a commutative ring A, we give a characterization for the
amalgamation of A with B along J with respect to f (denoted by A ./f J)
(see for instance [11]) to be g(x)-invo clean. Also, we consider the idealization
A ∝ E of any A-module E and prove that A ∝ E is g(x)-invo clean ring if and
only if A is an invo-clean and 2E = 0. In Section 5, some classes of g(x)-invo
clean rings are discussed.

2. g(x)-invo clean rings

In this section, we firstly define g(x)-invo clean elements and g(x)-invo clean
rings. We study some of the basic properties of g(x)-invo clean rings. Moreover,
we give some necessarily examples.

Definition. Let R be a ring and let g(x) be a fixed polynomial in C(R)[x].
An element r ∈ R is called g(x)-invo clean if r = v+ s where g(s) = 0 and v is
an involution of R. We say that R is g(x)-invo clean if every element in R is
g(x)-invo clean.

Obviously, g(x)-invo clean rings are g(x)-clean. In contrast, Z7 is clean but
is not invo-clean. Since (x2 − x)-invo clean rings are precisely the invo-clean
rings, we can say that for g(x) = x2−x, the ring Z7 is g(x)-clean, but it is not
g(x)-invo clean.

In the other hand, invo-clean rings are exactly (x2−x)-invo clean. However,
there are g(x)-invo clean rings which are not invo-clean and vice versa:

Example 2.1. Let R = Z5 and g(x) = x5 + 4x ∈ C(R)[x]. Then:

(1) R is not invo-clean (In fact, the ring R has involutions {1, 4}, idempo-
tents {0, 1}). Since the element 3 of R cannot be expressed as sum of
an idempotent and an involution, then R is not invo-clean.
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(2) R is g(x)-invo clean.

Example 2.2. Let R be a Boolean ring with the number of elements |R| > 2
and c ∈ R with c ∈ R\{0, 1}. Define g(x) = (x+ 1)(x+ c). Then:

(1) R is invo-clean.
(2) R is not g(x)-invo clean.

Proof. (1) Since e = (2e− 1) + (1− e) with (2e− 1)2 = 1 and (1− e)2 = 1− e,
then any idempotent is an invo-clean element. Thus, R is invo-clean.

(2) Because if c = v + s where v ∈ Inv(R) and g(s) = 0, then it must be
that v = 1 and s = c− v. But, clearly, g(c− 1) 6= 0. Hence, R is not g(x)-invo
clean. �

However, for some type of polynomials, invo-cleanness and g(x)-invo clean-
ness are equivalent.

Theorem 2.3. Let R be a ring and g(x) ∈ (x− a)(x− b)C(R)[x] where a, b ∈
C(R). Then the following hold:

(1) R is invo-clean and (b− a) ∈ Inv(R) if and only if R is (x− a)(x− b)-
invo clean.

(2) If R is invo-clean and (b− a) ∈ Inv(R), then R is g(x)-invo clean.

Proof. (1) Suppose r ∈ R. Since R is g(x)-invo clean, there exist an involution
v1 and a root s1 of g(x) such that b = v1+s1. Since g(s1) = (s1−a)(s1−b) = 0,
we have s1 = a. This implies that b − a is involution. Again by hypothesis,
there exist an involution v2 and a root s2 of g(x) such that (b−a)r+a = v2+s2.
Set e = (b−a)(s2−a), i.e., s2 = (b−a)e+a. Then we get r = e+(b−a)v2. Note
that g(s2) = (s2 − a)(s2 − b) = (b− a)e[(b− a)e+ a− b] = (b− a)2(e2 − e) = 0
since b− a ∈ C(R). Since (b− a) ∈ Inv(R), we have e2 = e, as required.

Conversely, for any r ∈ R, by hypothesis we may write (b−a)(r−a) = e+v
where e2 = e ∈ R and v ∈ Inv(R). Thus, we have r = [(b− a)e+ a] + (b− a)v.
Note that (b − a)v is an involution since (b − a) ∈ Inv(R). Now we have
g((b − a)e + a) = (b − a)e[(b − a)e + a − b] = (b − a)2e(e − 1) = 0, and so
(b− a)e+ a is a root of g(x). This completes the proof.

(2) This follows from (1). �

In fact, the condition a, b ∈ C(R) in Theorem 2.3 can be replaced by (b−a) ∈
C(R).

Corollary 2.4. Let R be a ring. Then R is invo-clean if and only if R is
(x2 + x)-invo clean.

Proof. This follows from Theorem 2.3 when a = 0 and b = −1. �

Remark 2.5. The equivalence of (x2 + x)-invo clean and invo-clean is a global
property. That is, it holds for a ring R but it may fail for a single element. For
example, 1 + 1 = 2 ∈ Z is invo-clean but it is not (x2 +x)-invo clean in Z since
Z has only two involutions 1 and −1.
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In [6, Proposition 10], Camillo and Yu showed that if 2 ∈ U(R), then R is
clean if and only if every element of R is the sum of a unit and a square root
of 1. Here we have a similar result for invo-clean rings.

Corollary 2.6. A ring R is invo-clean and 2 ∈ Inv(R) if and only if every
element of R is the sum of an involution and a square root of 1.

Proof. Let g(x) = (x+ 1)(x− 1) = x2 − 1. Note that the condition that every
element of R is the sum of an involution and a square root of 1 is equivalent to
R being g(x)-invo clean. Hence by Theorem 2.3, the proof is immediate. �

Theorem 2.7. Let R be a ring, n ∈ N and a, b ∈ R. Then R is (ax2n−bx)-invo
clean if and only if R is (ax2n + bx)-invo clean.

Proof. Suppose R is (ax2n − bx)-invo clean. Then for any r ∈ R, −r = v + s
where (as2n−bs) = 0 and v ∈ Inv(R). So r = (−v)+(−s) where (−v) ∈ Inv(R)
and a(−s)2n + b(−s) = 0. Hence, r is (ax2n + bx)-invo clean. Therefore, R is
(ax2n + bx)-invo clean. Now suppose R is (ax2n + bx)-invo clean. Let r ∈ R.
Then there exist s and v such that −r = v+s, (as2n+bs) = 0 and v ∈ Inv(R).
So r = (−v) + (−s) and as2n− bs = 0 is satisfied. Hence, R is (ax2n− bx)-invo
clean. �

For example, we conclude that (x2 + x)-invo clean rings and (x2 − x)-invo
clean rings are equivalent to invo-clean rings.

Remark 2.8. The equivalence in Theorem 2.7 does not hold for odd powers. For
example, the ring Z3 is clearly a (x3 − x)-invo clean which is not (x3 + x)-invo
clean.

Lemma 2.9. Let R be a ring and e ∈ Id(R). Then Inv(eRe) = (eRe) ∩ (ē+
Inv(R)), where ē = 1− e.

Proof. (⊆) If v ∈ Inv(eRe), then v2 = e. Since the product of v with ē is zero,
(v − ē)2 = e+ ē = 1, and so (v − ē) ∈ Inv(R). Then v ∈ ē+ Inv(R).

(⊇) If a = ē + v ∈ eRe with v ∈ Inv(R), then a − ē = v, and hence
(a− ē)2 = 1. Thus, (ea− eē)2 = e, and so ea2 = e. Therefore a2 = e, and then
a ∈ Inv(eRe). �

For invo-clean rings, the author in [10, Theorem 2.2] proved that if R is an
invo-clean ring and e2 = e, then the corner ring eRe is an invo-clean ring. For
g(x)-invo clean rings, we have the following result:

Theorem 2.10. Let R be an (x− a)(x− b)-invo clean ring with a, b ∈ C(R).
Then for any e2 = e ∈ R, eRe is (x − ea)(x − eb)-invo clean. In particular,
if g(x) ∈ (x − ea)(x − eb) ∈ C(R)[x] and R is (x − a)(x − b)-invo clean with
a, b ∈ C(R), then eRe is g(x)-invo clean.

Proof. By Theorem 2.3 R is (x−a)(x−b)-invo clean if and only if R is invo-clean
and (b−a) ∈ Inv(R). If R is invo-clean, then eRe is invo-clean by [10, Theorem
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2.2]. Again by Theorem 2.3 and Lemma 2.9, eRe is (x − ea)(x − eb)-invo
clean. �

Let R be a ring and let g(x) be a fixed polynomial in C(R)[x]. An element
r ∈ R is called g(x)-nil clean if r = b+ s where g(s) = 0 and b is a nilpotent of
R. Then R is called g(x)-nil clean if every element in R is g(x)-nil clean [15].
Thus, we have the following Proposition.

Proposition 2.11. Let R be a ring and g(x) ∈ C(R)[x]. If R is a g(x)-invo
clean ring with 2 ∈ Nil(R), then R is g(1− x)-nil clean with bounded index of
nilpotence.

Proof. Given r ∈ R, we write r = v + s, where v2 = 1 and g(s) = 0. But
(1+v)2 = 2+2v = 2(1+v), and hence (1+v)3 = 2(1+v)2 = 22(1+v), etc. By
induction we derive that (1+v)n+1 = 2n(1+v) for all n ∈ N. Thus (1+v)t = 0
for some appropriate natural t (since 2 ∈ Nil(R)), that is, (1 + v) ∈ Nil(R).
Furthermore, one may write that r = (v+ 1)− (1− s), whence R is g(1−x)-nil
clean, as claimed. �

Corollary 2.12. If R is an invo-clean ring with 2 ∈ Nil(R), then R is nil
clean with bounded index of nilpotence.

Proof. Since invo-clean (resp. nil clean) is (x2−x)-invo clean (resp. (x2−x)-nil
clean). �

3. General properties of g(x)-invo clean rings

Let R and S be two rings. Consider the ring homomorphism ψ : C(R) →
C(S) with ψ(1R) = 1S . Then ψ induces a map ψ′ from C(R)[x] to C(S)[x]
such that for g(x) =

∑n
i=0 aix

i ∈ C(R)[x], gψ(x) := ψ′(g(x)) =
∑n
i=0 ψ(ai)x

i ∈
C(S)[x]. We should note that if n ∈ Z, then ψ(n) = ψ(1+ · · ·+1) = nψ(1) = n.
So, if g(x) ∈ Z[x], then gψ(x) = g(x).

Next, we give some properties of the class of g(x)-invo clean rings. We start
by a simple result.

Proposition 3.1. Let R and S be two rings, ψ : R→ S be a ring epimorphism
and g(x) =

∑n
i=0 aix

i ∈ C(R)[x]. If R is g(x)-invo clean, then S is gψ(x)-invo
clean.

Proof. Let g(x) =
∑n
i=0 aix

i ∈ C(R)[x] and consider gψ(x) :=
∑n
i=0 ψ(ai)x

i ∈
C(S)[x]. For every α ∈ S, there exists r ∈ R such that ψ(r) = α. Since R
is g(x)-invo clean, there exist s ∈ R and v ∈ Inv(R) such that r = v + s and
g(s) = 0. So α = ψ(r) = ψ(v + s) = ψ(v) + ψ(s) with ψ(v) ∈ Inv(S)
and gψ(ψ(s)) =

∑n
i=0 ψ(ai)(ψ(s))i =

∑n
i=0 ψ(ai)ψ(si) =

∑n
i=0 ψ(ais

i) =
ψ(
∑n
i=0 ais

i) = ψ(g(s)) = ψ(0) = 0. Therefore, S is gψ(x)-invo clean. �

Now by Proposition 3.1, the following holds:
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Corollary 3.2. If R is g(x)-invo clean, then for any ideal I of R, R/I is

g(x)-invo clean where g(x) ∈ C(R/I)[x].

Proof. Let ψ : R→ R/I be the canonical epimorphism. Note that if a ∈ C(R),
then ā ∈ C(R/I), and so the result follows from Proposition 3.1. �

Proposition 3.3. Let R1, R2, . . . , Rn be rings and g(x) ∈ Z[x]. Then

R :=
n∏
i=1

Ri is g(x)-invo clean if and only if Ri is g(x)-invo clean for all i ∈

{1, 2, . . . , n}.

Proof. ⇒): LetR be g(x)-invo clean. Define πj :
n∏
i=1

Ri → Rj by πj((ai)i) = aj .

Since for all i ∈ {1, 2, . . . , n}, πj is a ring epimorphism, so by Corollary 3.2, for
every i ∈ {1, 2, . . . , n}, Ri is g(x)-invo clean.

⇐): Let (x1, x2, . . . , xn) ∈
n∏
i=1

Ri. For each i, write xi = vi + si where

vi ∈ Inv(Ri), g(si) = 0. Let v = (v1, v2, . . . , vn) and s = (s1, s2, . . . , sn). Then
it is clear that v ∈ R and g(s) = 0. Therefore, R is g(x)-invo clean. �

Let R be a ring with an identity and S be a ring (not necessary unitary)
which is an (R,R)-bimodule such that (s1s2)a = s1(s2a), a(s1s2) = (as1)s2 and
(s1a)s2 = s1(as2) for all a ∈ R, s1, s2 ∈ S. The ideal-extension I(R,S) of R by
S is defined as the additive abelian group I(R,S) = R⊕S with multiplication
(a1, s1)(a2, s2) = (a1a2, a1s2 + s1a2 + s1s2). If g(x) = (a0, s0) + (a1, s1)x +
· · ·+ (an, sn)xn ∈ C(I(R,S))[x], then clearly gR(x) = a0 + a1x+ · · ·+ anx

n ∈
C(R)[x].

Proposition 3.4. Let R and S be as above. If I(R,S) is g(x)-invo clean, then
R is gR(x)-invo clean.

Proof. If we define µR : I(R,S) → R by µR(r, s) = r, then µR is a ring
epimorphism. The result follows by Corollary 3.2. �

Let R be a ring and α : R → R be a ring endomorphism. By R[[x, α]] we
denote the ring of skew formal power series over R, that is all formal power
series in x with coefficients from R with multiplication defined by xr = α(r)x
for all r ∈ R. In particular, R[[x]] = R[[x, 1R]] is the ring of formal power series
over R. The skew polynomial ring R[x, α] can be defined in an analogous way.
One can prove that R[[x, α]] ' I(R, 〈x〉) where 〈x〉 is the ideal generated by x.

Corollary 3.5. Let R be a ring and α : R → R be a ring endomorphism. If
R[[x, α]] (or in particular R[[x]]) is g(x)-invo clean, then R is gµ(x)-invo clean
where µ : R[[x, α]]→ R is defined by µ(f) = f(0).

In general, the ring of polynomials R[x] over a ring R is not g(x)-clean. This
is also true for commutative g(x)-invo clean rings.
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Lemma 3.6. Let R be a commutative ring and f =
∑n
i=0 aix

i ∈ R[x] be an
involution element. Then a0 is an involution and ai is nilpotent for each i.

Proof. Since f is involution, f2 = 1. So a20 = 1. Therefore, a0 is an involution.
Now, to end the proof, it is enough to show that for each prime ideal P of R;
every ai ∈ P . Since P is prime, thus (R/P )[x] is an integral domain. Define
ϕ : R[x] → (R/P )[x] by ϕ(

∑n
i=0 aix

i) =
∑n
i=0(ai + P )xi. Clearly, ϕ is an

epimorphism. But ϕ(f)ϕ(f) = ϕ(1), and so deg(ϕ(f)ϕ(f)) = deg(ϕ(1)). So,
deg(ϕ(f)) = 0. Thus, a1 + P = a2 + P = · · · = an + P = P , as required. �

Theorem 3.7. If R is a commutative ring, then R[x] is not invo-clean (hence
not (x2 − x)-invo clean).

Proof. We show that x is not invo-clean in R[x]. Suppose that x = v+e, where
v ∈ Inv(R[x]) and e ∈ Id(R[x]). Since Id(R) = Id(R[x]) and x = v + e, so
x− e is an involution. Hence, by Lemma 3.6, 1 should be nilpotent, which is a
contradiction. �

A Morita context (A,B, V,W,ψ, φ) consists of two rings A, B, two bimod-
ules AVB , BWA and a pair of bimodule homomorphisms ψ : V ⊗B W → A
and φ : W ⊗A V → B, such that ψ(v ⊗ w)v′ = vφ(w ⊗ v′), φ(w ⊗ v)w′ =
wψ(v ⊗ w′). With such a Morita context we associate the ring T = [ A V

W B ] =
{[ a vw b ] : a ∈ A, b ∈ B, v ∈ V,w ∈W} under the usual matrix addition and mul-
tiplication defined as:[

a v
w b

] [
a′ v′

w′ b′

]
=

[
aa′ + ψ(v ⊗ w′) av′ + vb′

wa′ + bw′ φ(w ⊗ v′) + bb′

]
.

We call T a Morita context ring. If g(x) =
[ a0 v0
w0 b0

]
+
[ a1 v1
w1 b1

]
x+···+

[ an vn
wn bn

]
xn ∈

C(T )[x], then clearly gA(x) = a0 + a1x + · · · + anx
n ∈ C(A)[x] and gB(x) =

b0 + b1x+ · · ·+ bnx
n ∈ C(B)[x].

Proposition 3.8. Let T = [ A V
W B ] be a Morita context with ψ, φ = 0. If T is

g(x)-invo clean, then A is gA(x)-invo clean and B is gB(x)-invo clean.

Proof. Assume that T is g(x)-invo clean with ψ, φ = 0. Let I = [ 0 V
W B ] and

J = [ A V
W B ]. Then clearly I and J are ideals of T and moreover, T/I ∼= A

and T/J ∼= B. It follows by Corollary 3.2 that A is gA(x)-invo clean and B is
gB(x)-invo clean. �

Corollary 3.9. Let A, B be two rings and M be an (A,B)-bimodule. Let
T = [A M

0 B ] be the formal triangular matrix ring. If T is g(x)-invo clean, then
A is gA(x)-invo clean and B is gB(x)-invo clean.

In the following proposition, we consider a particular case of formal trian-
gular matrix rings. Let R be a commutative ring and M an R-module. The
trivial extension of R by M is the (commutative) ring:

R(M) =

{[
r m
0 r

]
: r ∈ R,m ∈M

}



462 M. EL MAALMI AND H. MOUANIS

with the usual matrix addition and multiplication. We note that if [ r m0 r ] ∈
Inv(R(M)), then clearly r ∈ Inv(R). We recall that R naturally embeds into
R(M) via r → [ r 0

0 r ]. Thus any polynomial g(x) =
∑n
i=0 aix

i ∈ R[x] can be

written as g(x) =
∑n
i=0

[
ri 0
0 ri

]
xi ∈ R(M)[x] and conversely.

Proposition 3.10. Let R be a commutative ring, M an R-module and 2M = 0.
Then the idealization R(M) of R and M is g(x)-invo clean if and only if R is
g(x)-invo clean.

Proof. (⇒) Note that R ' R(M)/M̃ where M̃ = {[ 0 m0 0 ] : m ∈M}. Hence R
is g(x)-invo clean by Corollary 3.2.
⇐) Let g(x) =

∑n
i=0 aix

i ∈ R[x] and r ∈ R. Since R is g(x)-invo clean,
we have r = v + s, where v ∈ Inv(R) and g(s) = 0. Then for m ∈ M ,
[ r m0 r ] = [ v m0 v ] + [ s 0

0 s ], where [ v m0 v ] ∈ Inv(R(M) (since 2M = 0). Moreover, we
have:

g(

[
s 0
0 s

]
) = a0

[
1 0
0 1

]
+ a1

[
s 0
0 s

]
+ a2

[
s2 0
0 s2

]
+ · · ·+ an

[
sn 0
0 sn

]
=

[
a0 + a1s+ a2s

2 + · · ·+ ans
n 0

0 a0 + a1s+ a2s
2 + · · ·+ ans

n

]
=

[
0 0
0 0

]
.

Therefore, R(M) is g(x)-invo clean. �

4. (x2 − x)-invo clean rings

Let A and B be two commutatives rings, let J be an ideal of B and let
f : A −→ B be a ring homomorphism. The amalgamation of A with B along J
with respect to f is defined as A ./f J = {(a, f(a)+j) | a ∈ A, j ∈ J}. It is easy
to check that A ./f J is a subring of A × B (with the usual componentwise
operations). For more properties of A ./f J , one can see [11, 12]. In the
following theorem, we investigate the invo-cleanness (hence the (x2 − x)-invo
cleanness) of A ./f J . Recall that a ring R is called invo-clean if every r ∈ R
can be written as r = v + e, where v ∈ Inv(R) and e ∈ Id(R). If, in addition,
the existing idempotent e is unique, then R is called uniquely invo-clean.

Theorem 4.1. Let f : A −→ B be a ring homomorphism and J be an ideal of
B.

(1) If A ./f J is an invo-clean (resp., a uniquely invo-clean) ring, then A
is an invo-clean (resp., a uniquely invo-clean) ring and f(A) + J is an
invo-clean ring.

(2) Assume that f(A)+J
J is uniquely invo-clean. Then A ./f J is an invo-

clean ring if and only if A and f(A) + J are invo-clean rings.

Proof. (1) If A ./f J is an invo-clean, we know by [11, Prop. 5.1] that A and
f(A)+J are homomorphic images of A ./f J , and so by [9, Lemma 2.1], A and
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f(A) + J are invo-clean . Assume now that A ./f J is uniquely invo-clean and
consider v+e = v′+e′ where v, v′ ∈ Inv(A) and e, e′ ∈ Id(A). Then (v, f(v))+
(e, f(e)) = (v′, f(v′)) + (e′, f(e′)) and clearly (v, f(v)),(v′, f(v′)) ∈ Inv(A ./f

J) and (e, f(e)), (e′, f(e′)) ∈ Id(A ./f J). Thus, (v, f(v)) = (v′, f(v′)) and
(e, f(e)) = (e′, f(e′)). Hence v = v′ and e = e′. Consequently, A is uniquely
invo-clean.

(2) If A ./f J is invo-clean, then so A and f(A) + J by (1). Conversely,
assume that A and f(A) + J are invo-clean rings and consider (a, j) ∈ A× J .
Since A is invo-clean, we write that a = v + e for some v ∈ Inv(A) and
e ∈ Id(A). Furthermore, since f(A) + J is invo-clean, f(a) + j = (f(x) +
k) + (f(y) + l) with (f(x) + k) and (f(y) + l) are respectively involution and

idempotent element of f(A) + J . It is clear that f(x) = f(x) + k (resp. f(v))

and f(y) = f(y) + l (resp. f(e)) are respectively involution and idempotent

element of f(A)+J
J , and we have f(a) = f(v) + f(e) = f(x) + f(y). Thus,

f(v) = f(x) and f(e) = f(y) since f(A)+J
J is uniquely invo-clean. Consider

k, l′ ∈ J such that f(x) = f(v)+k′ and f(y) = f(e)+l′. We have, (a, f(a)+j) =
(v, f(v) + k′ + k) + (e, f(e) + l′ + l), and it is clear that (v, f(v) + k′ + k) ∈
Inv(A ./f J) and (e, f(e) + l′ + l) ∈ Id(A ./f J). Consequently, A ./f J is
invo-clean. �

Remark 4.2. Let f : A −→ B be a ring homomorphism and J an ideal of B.

(1) If B = J , we have A ./f J = A×B. Hence A ./f J is invo-clean if and
only if A and B are invo-clean (by [9, Proposition 2.13]).

(2) If f−1(J) = {0}, we have A ./f J ∼= f(A) + J by [11, Proposition
5.1(3)]. Hence, A ./f J is invo-clean if and only if f(A) + J is invo-
clean.

In a duplication ring, we obtain:

Corollary 4.3. Let A be a ring and I an ideal such that A/I is an uniquely
invo-clean. Then A ./ I is invo-clean if and only if so is A.

Proof. In this case, we have f(A)+I = A+I = A. Thus Theorem 4.1 completes
the proof. �

Proposition 4.4. Let f : A −→ B be a ring homomorphism and let J be an
ideal of B such that J ⊂ Id(B). Then A ./f J is invo-clean if and only if A is
invo-clean.

Proof. Let (a, j) ∈ A×J . Hence there exist an idempotent e and an involution
v such that a = v + e (since A is invo-clean). Hence (a, f(a) + j) = (v, f(v)) +
(e, f(e) + j), and then for all j ∈ J , we have 2j = 0 and j2 = j (since
J ⊂ Id(B)). Therefore, (f(e) + j)2 = (f(e))2 + 2jf(e) + j2 = (f(e) + j), and
so (a, f(a) + j) is an invo-clean element of A ./f J . Thus A ./f J is invo-clean.
The converse implication is clear. �
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For more examples of invo-clean rings, we consider the method of idealiza-
tion. Let A be a commutative ring and E an A-module. Nagata [16] introduced
the idealization A ∝ E of A and E. The idealization of A and E (or trivial
extension ring of A by E) is the ring A ∝ E with multiplication given by
(a1, e1)(a2, e2) = (a1a2, a1e2 + a2e1). This construction has been extensively
studied and has many applications in different contexts, see [2, 3].

Lemma 4.5. If A is an invo-clean ring, then any q ∈ Nil(A) satisfies the
equation q2 + 2q = 0.

Proof. If q ∈ Nil(A), write q = v + e where v ∈ Inv(A) and e ∈ Id(A).
Thus (−v) = (−q) + e, where (−v) ∈ Inv(A) and (−q) ∈ Nil(A). Then by
[9, Corollary 2.6], we conclude that e = 1. Therefore q = v + 1, and hence
q2 + 2q = 0. �

Proposition 4.6. Let A be a commutative ring, E an A-module and R :=
A ∝ E the trivial extension ring of A by E. Then R is invo-clean if and only
if A is invo-clean and 2E = 0.

Proof. (⇒) If A ∝ E is invo-clean, then A ∼= (A ∝ E)/(0 ∝ E) is invo-clean
by [9, Lemma 2.1]. On the other hand, let x ∈ E. Then by Lemma 4.5
(0, x)2 + 2(0, x) = (0, 0) (since (0, x) ∈ Nil(A ∝ E) and A ∝ E is invo-clean),
which shows that 2x = 0. Hence 2E = 0.

(⇐) Let (a, x) ∈ A ∝ E and write a = v + e, where v ∈ Inv(A) and
e ∈ Id(A). Thus (a, x) = (v, x)+(e, 0), and it is clear that (v, x) ∈ Inv(A ∝ E)
and (e, 0) ∈ Id(A ∝ E). Consequently, A ∝ E is invo-clean. �

Clearly, invo-clean rings are clean rings. But in general, clean rings may not
be invo-clean. Then to enrich the literature with new example of clean ring
but not invo-clean, we propose the next example.

Example 4.7. Let A := Z5 and let R := A ∝ A be the trivial ring extension
of A by A. Then:

(1) By [8, Corollary 2.12], R is a clean ring since A is a clean ring.
(2) Since A is not invo-clean, R is not invo-clean by Proposition 4.6.

If G is a group and R is a ring, we denote the group ring over R by RG. If
RG is invo-clean, then R is invo-clean by [9, Lemma 2.1]. But it seems to be
difficult to characterize R and G for which RG is invo-clean in general. In the
following we will give some rings and groups such that RG is invo-clean.

Proposition 4.8. Let R be a ring where 2 ∈ U(R) and G = {1, g} be a group
with two elements. Then RG is invo-clean if and only if R is invo-clean.

Proof. One direction is trivial.
Conversely, if R is invo-clean, since 2 is invertible, by [14, Proposition 3]

RG ∼= R×R. Hence, RG is invo-clean by [9, Proposition 2.13]. �
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In the next proposition, we determine conditions under which the group ring
RG is invo-clean where G = Cn the cyclic group of order n.

Proposition 4.9. Let R be a ring and 2 ∈ U(R). Then, RC4 is invo-clean if
and only if R is invo-clean.

Proof. As 2 ∈ U(R), RC4
∼= R×R×R[x]/〈x2 +1〉 by Yi and Zhou [24, Lemma

3.3]. But as 2 ∈ U(R), we have R[x]/〈x2 + 1〉 ∼= RC2
∼= R×R. Therefore, the

claim follows. �

Proposition 4.10. If R is an invo-clean ring with 2 ∈ U(R), then RC2k is
invo-clean for all k ≥ 0.

Proof. We know that RC2k
∼= (RCk)C2. So it suffices to show that if RC2 is

invo-clean. But RC2 is invo-clean by Proposition 4.8, as required. �

5. Unitly invo-clean rings

In this section, we explore and discuss the original notion of unitly invo-clean
rings stated in Problem 3 of [9].

Definition ([9]). A ring R is called unitly invo-clean if U(R) = Inv(R)+Id(R),
i.e., for each a ∈ U(R), there exist v ∈ Inv(R) and e ∈ Id(R) such that
a = v + e.

Remark 5.1. Although homomorphic images of units, idempotents and invo-
lutions are again units, idempotents and involutions, respectively, it follows in
general that even an epimorphic image of a unitly invo-clean ring need not be
unitly invo-clean. For instance, the ring Z is unitly invo-clean, while Z5 is not.

However, the following is valid:

Proposition 5.2. Suppose that R is a ring with I ⊆ J(R). Then R/I is a
unitly invo-clean ring provided that R is a unitly invo-clean ring.

Proof. We have here I ⊆ J(R), which implies that U(R) → U(R/I) is sur-
jective. Hence if w = u + I ∈ U(R/I), then u ∈ U(R) = Inv(R) + Id(R),
so that u = v + e, where v ∈ Inv(R) and e ∈ Id(R). Thus w = u + I =
(v + I) + (e+ I) ∈ Inv(R/I) + Id(R/I), as needed. �

Corollary 5.3. Let R be a ring. If R is a unitly invo-clean, then R[[x]]/(xn)
(n ∈ N) is a unitly invo-clean.

Proof. Clearly, R[[x]]/(xn) = {a0 + a1x + · · · + an−1x
n−1| a0, . . . , an−1}. Let

α : R[[x]]/(xn) −→ R be a morphism such that α(f) = f(0). It is easy to
check that α is an R-epimorphism and kerα is a nil ideal of R, and therefore
the result follows from Proposition 5.2. �

The nil property of the Jacobson radical can be strengthened by the following
observation.
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Proposition 5.4. If R is a unitly invo-clean ring, then J(R) is nil with index
of nilpotence at most 3.

Proof. Let j ∈ J(R). We write 1+ j = v+e, where v ∈ Inv(R) and e ∈ Id(R).
In both cases, since J(R) + U(R) = U(R), we derive that v − j = 1 − e ∈
U(R) ∩ Id(R) = {1}, and hence e = 0. Thus j = v − 1 implies that j2 = −2j.
Consequently, j3 = −2j2, then j3 = 4j. Replacing j by 2j in the last equality,
we obtain 8j3 = 8j whence 8j(1− j2) = 0. Since 1− j2 ∈ 1 + J(R) ⊆ U(R), it
follows that 8j = 0. On the other hand, substituting j by 2j in j2 = −2j and
multiplying both sides of these two equalities by 4, we have 4j2 = −4j = −8j,
i.e., 4j = 0. Finally, j3 = 4j = 0. �

We now arrange to prove the following.

Proposition 5.5. If R is a unitly invo-clean ring with 2 ∈ U(R), then Nil(R)
= J(R) = {0}.

Proof. Since in view of Proposition 5.4 it must be that J(R) ⊆ Nil(R), we
need to consider only nilpotent elements. To that aim, suppose q ∈ Nil(R).
Then 1 + q ∈ U(R). Write 1 + q = v + e, where v ∈ Inv(R) and e ∈ Id(R)
(since R is a unitly invo-clean ring). Thus v = q + (1 − e). Appealing to
[11, Corollary 2.6], we conclude that e = 0. Therefore q = v − 1, and hence
q2 = 2−2v = −2(v−1) = −2q. This leads to q(q+2) = 0. Since q+2 ∈ U(R),
we have q = 0, as expected. �

Proposition 5.6. Let R be a unitly invo-clean ring and 4 = 0. Then Z(R) is
a unitly invo-clean ring.

Proof. For any z ∈ U(Z(R)) ⊆ U(R), write z = v + e, where v ∈ Inv(R) and
e ∈ Id(R). It follows by squaring that z2 − 2ze = 1 − e. Squaring again, we
deduce that z4 = 1 − e, so that e = 1 − z4 ∈ Z(R). We therefore infer that
v ∈ Z(R), and hence z = v + e ∈ Inv(Z(R)) + Id(Z(R)). �

Proposition 5.7. Suppose that R is a nil-clean ring. Then R is unitly invo-
clean if and only if any q ∈ Nil(R) satisfies the equation q2 + 2q = 0.

Proof. (⇒) As in proof of Proposition 5.5, we derive that q2 = −2q, and then
q2 + 2q = 0.

(⇐) Given r ∈ U(R), we write r = q + e, where q ∈ Nil(R) and e ∈ Id(R)
(since R is a nil-clean ring). Thus r = q + e = (1 + q) − (1 − e). One checks
that (1 + q)2 = q2 + 2q + 1 = 1 and (1− e)2 = 1− e, as required. �

As an interesting consequence, we obtain the following one.

Corollary 5.8. Let R be a nil-clean ring of characteristic 2. Then R is unitly
invo-clean if and only if the index of nilpotence of R is 2.

Remark 5.9. In regard to the above statement, it is worth noticing that Z8

is both unitly invo-clean and nil-clean containing the element 2 of nilpotence
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index 3. However, it is readily seen that 2 satisfies the equality q2 + 2q = 0
because 22 + 2 · 2 = 8 = 0.

Likewise, Z16 = Z24 is a nil-clean ring which is not necessarily unitly invo-
clean (compare with Corollary 5.8). In fact, Z16 is indecomposable, that is, the
only idempotents are 0 and 1 as well as all involutions are 1, 7, 9 and 15. So,
the unit 5 cannot be represented as a sum of an involution and an idempotent,
as expected.

Proposition 5.10. If R is a unitly invo-clean ring with 3 ∈ U(R), then 24 = 0.
In particular, 6 ∈ Nil(R).

Proof. Write 3 = v+ e, where v is an involution and e is an idempotent. Thus
(3 − v)2 = 3 − v implies that 5v = 7, whence 24 = 0 by squaring both sides
of the equality. In addition, 63 = 216 = 24 · 9 = 0, and hence 6 ∈ Nil(R), as
asserted. �
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