ON $g(x)$-INVO CLEAN RINGS

Mourad El Maalmi and Hakima Mouanis

Abstract

An element in a ring R with identity is called invo-clean if it is the sum of an idempotent and an involution and R is called invoclean if every element of R is invo-clean. Let $C(R)$ be the center of a ring R and $g(x)$ be a fixed polynomial in $C(R)[x]$. We introduce the new notion of $g(x)$-invo clean. R is called $g(x)$-invo if every element in R is a sum of an involution and a root of $g(x)$. In this paper, we investigate many properties and examples of $g(x)$-invo clean rings. Moreover, we characterize invo-clean as $g(x)$-invo clean rings where $g(x)=(x-a)(x-b)$, $a, b \in C(R)$ and $b-a \in \operatorname{Inv}(R)$. Finally, some classes of $g(x)$-invo clean rings are discussed.

1. Introduction and preliminaries

Everywhere in the text of the current paper, all our rings R are assumed to be associative, containing the identity element 1 , which in general differs from the zero element 0 . As usual, for such a ring R, the symbol $U(R)$ stands for the group of units, $\operatorname{Inv}(R)$ for the set of all involutions (= square roots of 1), $I d(R)$ for the set of all idempotents and $\operatorname{Nil}(R)$ for the set of all nilpotents. Following Han and Nicholson [14], an element $r \in R$ is called clean if $r=u+e$ for some $u \in U(R)$ and $e \in I d(R)$. A ring R is called clean if every element of R is clean. The notion of clean rings was first introduced by Nicholson [17] in 1977 in his study of lifting idempotents and exchange rings. Since then, some stronger concepts have been considered (e.g. uniquely clean, strongly clean and some special clean rings), see $[4,7,18,20-23]$, as well as some weaker ones (e.g. almost clean and weakly clean rings), see [1]. Recently, in 2017, Danchev [9] studied the following special case of cleanness, namely, invo-clean rings. They are rings in which every element is a sum of an idempotent element and an involution element.

Let $C(R)$ denotes the center of a ring R and $g(x)$ be a polynomial in $C(R)[x]$. Then following Camillo and Simón [5], R is called $g(x)$-clean if for each $r \in R$,

[^0]$r=u+s$ where $u \in U(R)$ and $g(s)=0$. Of course $\left(x^{2}-x\right)$-clean rings are precisely the clean rings.

Nicholson and Zhou [19] proved that if $g(x) \in(x-a)(x-b) C(R)[x]$ with $a, b \in C(R)$ and $b, b-a \in U(R)$ and ${ }_{R} M$ is a semisimple left R-module, then $\operatorname{End}\left({ }_{R} M\right)$ is $g(x)$-clean. Recently, Fan and Yang [13], studied more properties of $g(x)$-clean rings. Among many results, they prove that if $b-a \in U(R)$ with $a, b \in C(R)$, then R is a clean ring if and only if R is $(x-a)(x-b)$-clean.

This work is motivated by the notions of $g(x)$-cleanness and invo-cleanness and we will combine them into a new concept. In this way, we define and study $g(x)$-invo clean rings as a special class of $g(x)$-clean rings. For a ring R and $g(x) \in C(R)[x]$, an element $r \in R$ is called $g(x)$-invo clean if $r=v+s$ for some $v \in \operatorname{Inv}(R)$ and $g(s)=0$. Moreover, R is called $g(x)$-invo clean if every element in R is $g(x)$-invo clean.

The paper is organized as follows: In Section 1, we already have given the main definitions of the used concepts. In Section 2, we define $g(x)$-invo clean rings and determine the relation between $g(x)$-invo clean rings and invo-clean rings; in Section 3, some general properties of $g(x)$-invo clean rings are given; and in Section 4, for a commutative ring A, we give a characterization for the amalgamation of A with B along J with respect to $f\left(\right.$ denoted by $\left.A \bowtie^{f} J\right)$ (see for instance [11]) to be $g(x)$-invo clean. Also, we consider the idealization $A \propto E$ of any A-module E and prove that $A \propto E$ is $g(x)$-invo clean ring if and only if A is an invo-clean and $2 E=0$. In Section 5 , some classes of $g(x)$-invo clean rings are discussed.

2. $g(x)$-invo clean rings

In this section, we firstly define $g(x)$-invo clean elements and $g(x)$-invo clean rings. We study some of the basic properties of $g(x)$-invo clean rings. Moreover, we give some necessarily examples.
Definition. Let R be a ring and let $g(x)$ be a fixed polynomial in $C(R)[x]$. An element $r \in R$ is called $g(x)$-invo clean if $r=v+s$ where $g(s)=0$ and v is an involution of R. We say that R is $g(x)$-invo clean if every element in R is $g(x)$-invo clean.

Obviously, $g(x)$-invo clean rings are $g(x)$-clean. In contrast, \mathbb{Z}_{7} is clean but is not invo-clean. Since $\left(x^{2}-x\right)$-invo clean rings are precisely the invo-clean rings, we can say that for $g(x)=x^{2}-x$, the ring \mathbb{Z}_{7} is $g(x)$-clean, but it is not $g(x)$-invo clean.

In the other hand, invo-clean rings are exactly $\left(x^{2}-x\right)$-invo clean. However, there are $g(x)$-invo clean rings which are not invo-clean and vice versa:
Example 2.1. Let $R=\mathbb{Z}_{5}$ and $g(x)=x^{5}+4 x \in C(R)[x]$. Then:
(1) R is not invo-clean (In fact, the ring R has involutions $\{1,4\}$, idempotents $\{0,1\}$). Since the element 3 of R cannot be expressed as sum of an idempotent and an involution, then R is not invo-clean.
(2) R is $g(x)$-invo clean.

Example 2.2. Let R be a Boolean ring with the number of elements $|R|>2$ and $c \in R$ with $c \in R \backslash\{0,1\}$. Define $g(x)=(x+1)(x+c)$. Then:
(1) R is invo-clean.
(2) R is not $g(x)$-invo clean.

Proof. (1) Since $e=(2 e-1)+(1-e)$ with $(2 e-1)^{2}=1$ and $(1-e)^{2}=1-e$, then any idempotent is an invo-clean element. Thus, R is invo-clean.
(2) Because if $c=v+s$ where $v \in \operatorname{Inv}(R)$ and $g(s)=0$, then it must be that $v=1$ and $s=c-v$. But, clearly, $g(c-1) \neq 0$. Hence, R is not $g(x)$-invo clean.

However, for some type of polynomials, invo-cleanness and $g(x)$-invo cleanness are equivalent.

Theorem 2.3. Let R be a ring and $g(x) \in(x-a)(x-b) C(R)[x]$ where $a, b \in$ $C(R)$. Then the following hold:
(1) R is invo-clean and $(b-a) \in \operatorname{Inv}(R)$ if and only if R is $(x-a)(x-b)-$ invo clean.
(2) If R is invo-clean and $(b-a) \in \operatorname{Inv}(R)$, then R is $g(x)$-invo clean.

Proof. (1) Suppose $r \in R$. Since R is $g(x)$-invo clean, there exist an involution v_{1} and a root s_{1} of $g(x)$ such that $b=v_{1}+s_{1}$. Since $g\left(s_{1}\right)=\left(s_{1}-a\right)\left(s_{1}-b\right)=0$, we have $s_{1}=a$. This implies that $b-a$ is involution. Again by hypothesis, there exist an involution v_{2} and a root s_{2} of $g(x)$ such that $(b-a) r+a=v_{2}+s_{2}$. Set $e=(b-a)\left(s_{2}-a\right)$, i.e., $s_{2}=(b-a) e+a$. Then we get $r=e+(b-a) v_{2}$. Note that $g\left(s_{2}\right)=\left(s_{2}-a\right)\left(s_{2}-b\right)=(b-a) e[(b-a) e+a-b]=(b-a)^{2}\left(e^{2}-e\right)=0$ since $b-a \in C(R)$. Since $(b-a) \in \operatorname{Inv}(R)$, we have $e^{2}=e$, as required.

Conversely, for any $r \in R$, by hypothesis we may write $(b-a)(r-a)=e+v$ where $e^{2}=e \in R$ and $v \in \operatorname{Inv}(R)$. Thus, we have $r=[(b-a) e+a]+(b-a) v$. Note that $(b-a) v$ is an involution since $(b-a) \in \operatorname{Inv}(R)$. Now we have $g((b-a) e+a)=(b-a) e[(b-a) e+a-b]=(b-a)^{2} e(e-1)=0$, and so $(b-a) e+a$ is a root of $g(x)$. This completes the proof.
(2) This follows from (1).

In fact, the condition $a, b \in C(R)$ in Theorem 2.3 can be replaced by $(b-a) \in$ $C(R)$.
Corollary 2.4. Let R be a ring. Then R is invo-clean if and only if R is $\left(x^{2}+x\right)$-invo clean.

Proof. This follows from Theorem 2.3 when $a=0$ and $b=-1$.
Remark 2.5. The equivalence of $\left(x^{2}+x\right)$-invo clean and invo-clean is a global property. That is, it holds for a ring R but it may fail for a single element. For example, $1+1=2 \in \mathbb{Z}$ is invo-clean but it is not $\left(x^{2}+x\right)$-invo clean in \mathbb{Z} since \mathbb{Z} has only two involutions 1 and -1 .

In [6, Proposition 10], Camillo and Yu showed that if $2 \in U(R)$, then R is clean if and only if every element of R is the sum of a unit and a square root of 1 . Here we have a similar result for invo-clean rings.
Corollary 2.6. A ring R is invo-clean and $2 \in \operatorname{Inv}(R)$ if and only if every element of R is the sum of an involution and a square root of 1 .

Proof. Let $g(x)=(x+1)(x-1)=x^{2}-1$. Note that the condition that every element of R is the sum of an involution and a square root of 1 is equivalent to R being $g(x)$-invo clean. Hence by Theorem 2.3, the proof is immediate.

Theorem 2.7. Let R be a ring, $n \in \mathbb{N}$ and $a, b \in R$. Then R is $\left(a x^{2 n}-b x\right)$-invo clean if and only if R is $\left(a x^{2 n}+b x\right)$-invo clean.

Proof. Suppose R is $\left(a x^{2 n}-b x\right)$-invo clean. Then for any $r \in R,-r=v+s$ where $\left(a s^{2 n}-b s\right)=0$ and $v \in \operatorname{Inv}(R)$. So $r=(-v)+(-s)$ where $(-v) \in \operatorname{Inv}(R)$ and $a(-s)^{2 n}+b(-s)=0$. Hence, r is $\left(a x^{2 n}+b x\right)$-invo clean. Therefore, R is $\left(a x^{2 n}+b x\right)$-invo clean. Now suppose R is $\left(a x^{2 n}+b x\right)$-invo clean. Let $r \in R$. Then there exist s and v such that $-r=v+s,\left(a s^{2 n}+b s\right)=0$ and $v \in \operatorname{Inv}(R)$. So $r=(-v)+(-s)$ and $a s^{2 n}-b s=0$ is satisfied. Hence, R is $\left(a x^{2 n}-b x\right)$-invo clean.

For example, we conclude that $\left(x^{2}+x\right)$-invo clean rings and $\left(x^{2}-x\right)$-invo clean rings are equivalent to invo-clean rings.

Remark 2.8. The equivalence in Theorem 2.7 does not hold for odd powers. For example, the ring \mathbb{Z}_{3} is clearly a $\left(x^{3}-x\right)$-invo clean which is not $\left(x^{3}+x\right)$-invo clean.

Lemma 2.9. Let R be a ring and $e \in \operatorname{Id}(R)$. Then $\operatorname{Inv}(e R e)=(e R e) \cap(\bar{e}+$ $\operatorname{Inv}(R))$, where $\bar{e}=1-e$.
Proof. (\subseteq) If $v \in \operatorname{Inv}(e R e)$, then $v^{2}=e$. Since the product of v with \bar{e} is zero, $(v-\bar{e})^{2}=e+\bar{e}=1$, and so $(v-\bar{e}) \in \operatorname{Inv}(R)$. Then $v \in \bar{e}+\operatorname{Inv}(R)$.
(〇) If $a=\bar{e}+v \in e R e$ with $v \in \operatorname{Inv}(R)$, then $a-\bar{e}=v$, and hence $(a-\bar{e})^{2}=1$. Thus, $(e a-e \bar{e})^{2}=e$, and so $e a^{2}=e$. Therefore $a^{2}=e$, and then $a \in \operatorname{Inv}(e R e)$.

For invo-clean rings, the author in [10, Theorem 2.2] proved that if R is an invo-clean ring and $e^{2}=e$, then the corner ring $e R e$ is an invo-clean ring. For $g(x)$-invo clean rings, we have the following result:

Theorem 2.10. Let R be an $(x-a)(x-b)$-invo clean ring with $a, b \in C(R)$. Then for any $e^{2}=e \in R$, eRe is $(x-e a)(x-e b)$-invo clean. In particular, if $g(x) \in(x-e a)(x-e b) \in C(R)[x]$ and R is $(x-a)(x-b)$-invo clean with $a, b \in C(R)$, then eRe is $g(x)$-invo clean.
Proof. By Theorem 2.3 R is $(x-a)(x-b)$-invo clean if and only if R is invo-clean and $(b-a) \in \operatorname{Inv}(R)$. If R is invo-clean, then $e R e$ is invo-clean by [10, Theorem
2.2]. Again by Theorem 2.3 and Lemma 2.9, $e R e$ is $(x-e a)(x-e b)$-invo clean.

Let R be a ring and let $g(x)$ be a fixed polynomial in $C(R)[x]$. An element $r \in R$ is called $g(x)$-nil clean if $r=b+s$ where $g(s)=0$ and b is a nilpotent of R. Then R is called $g(x)$-nil clean if every element in R is $g(x)$-nil clean [15]. Thus, we have the following Proposition.

Proposition 2.11. Let R be a ring and $g(x) \in C(R)[x]$. If R is a $g(x)$-invo clean ring with $2 \in N i l(R)$, then R is $g(1-x)$-nil clean with bounded index of nilpotence.

Proof. Given $r \in R$, we write $r=v+s$, where $v^{2}=1$ and $g(s)=0$. But $(1+v)^{2}=2+2 v=2(1+v)$, and hence $(1+v)^{3}=2(1+v)^{2}=2^{2}(1+v)$, etc. By induction we derive that $(1+v)^{n+1}=2^{n}(1+v)$ for all $n \in \mathbb{N}$. Thus $(1+v)^{t}=0$ for some appropriate natural t (since $2 \in \operatorname{Nil}(R)$), that is, $(1+v) \in \operatorname{Nil}(R)$. Furthermore, one may write that $r=(v+1)-(1-s)$, whence R is $g(1-x)$-nil clean, as claimed.

Corollary 2.12. If R is an invo-clean ring with $2 \in \operatorname{Nil}(R)$, then R is nil clean with bounded index of nilpotence.

Proof. Since invo-clean (resp. nil clean) is $\left(x^{2}-x\right)$-invo clean (resp. $\left(x^{2}-x\right)$-nil clean).

3. General properties of $\boldsymbol{g}(\boldsymbol{x})$-invo clean rings

Let R and S be two rings. Consider the ring homomorphism $\psi: C(R) \rightarrow$ $C(S)$ with $\psi\left(1_{R}\right)=1_{S}$. Then ψ induces a map ψ^{\prime} from $C(R)[x]$ to $C(S)[x]$ such that for $g(x)=\sum_{i=0}^{n} a_{i} x^{i} \in C(R)[x], g_{\psi}(x):=\psi^{\prime}(g(x))=\sum_{i=0}^{n} \psi\left(a_{i}\right) x^{i} \in$ $C(S)[x]$. We should note that if $n \in \mathbb{Z}$, then $\psi(n)=\psi(1+\cdots+1)=n \psi(1)=n$. So, if $g(x) \in \mathbb{Z}[x]$, then $g_{\psi}(x)=g(x)$.

Next, we give some properties of the class of $g(x)$-invo clean rings. We start by a simple result.

Proposition 3.1. Let R and S be two rings, $\psi: R \rightarrow S$ be a ring epimorphism and $g(x)=\sum_{i=0}^{n} a_{i} x^{i} \in C(R)[x]$. If R is $g(x)$-invo clean, then S is $g_{\psi}(x)$-invo clean.

Proof. Let $g(x)=\sum_{i=0}^{n} a_{i} x^{i} \in C(R)[x]$ and consider $g_{\psi}(x):=\sum_{i=0}^{n} \psi\left(a_{i}\right) x^{i} \in$ $C(S)[x]$. For every $\alpha \in S$, there exists $r \in R$ such that $\psi(r)=\alpha$. Since R is $g(x)$-invo clean, there exist $s \in R$ and $v \in \operatorname{Inv}(R)$ such that $r=v+s$ and $g(s)=0$. So $\alpha=\psi(r)=\psi(v+s)=\psi(v)+\psi(s)$ with $\psi(v) \in \operatorname{Inv}(S)$ and $g_{\psi}(\psi(s))=\sum_{i=0}^{n} \psi\left(a_{i}\right)(\psi(s))^{i}=\sum_{i=0}^{n} \psi\left(a_{i}\right) \psi\left(s^{i}\right)=\sum_{i=0}^{n} \psi\left(a_{i} s^{i}\right)=$ $\psi\left(\sum_{i=0}^{n} a_{i} s^{i}\right)=\psi(g(s))=\psi(0)=0$. Therefore, S is $g_{\psi}(x)$-invo clean.

Now by Proposition 3.1, the following holds:

Corollary 3.2. If R is $g(x)$-invo clean, then for any ideal I of $R, R / I$ is $\overline{g(x)}$-invo clean where $\overline{g(x)} \in C(R / I)[x]$.

Proof. Let $\psi: R \rightarrow R / I$ be the canonical epimorphism. Note that if $a \in C(R)$, then $\bar{a} \in C(R / I)$, and so the result follows from Proposition 3.1.

Proposition 3.3. Let $R_{1}, R_{2}, \ldots, R_{n}$ be rings and $g(x) \in \mathbb{Z}[x]$. Then
$R:=\prod_{i=1}^{n} R_{i}$ is $g(x)$-invo clean if and only if R_{i} is $g(x)$-invo clean for all $i \in$ $\{1,2, \ldots, n\}$.

Proof. $\Rightarrow)$: Let R be $g(x)$-invo clean. Define $\pi_{j}: \prod_{i=1}^{n} R_{i} \rightarrow R_{j}$ by $\pi_{j}\left(\left(a_{i}\right)_{i}\right)=a_{j}$. Since for all $i \in\{1,2, \ldots, n\}, \pi_{j}$ is a ring epimorphism, so by Corollary 3.2, for every $i \in\{1,2, \ldots, n\}, R_{i}$ is $g(x)$-invo clean.
$\Leftarrow):$ Let $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \prod_{i=1}^{n} R_{i}$. For each i, write $x_{i}=v_{i}+s_{i}$ where $v_{i} \in \operatorname{Inv}\left(R_{i}\right), g\left(s_{i}\right)=0$. Let $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ and $s=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$. Then it is clear that $v \in R$ and $g(s)=0$. Therefore, R is $g(x)$-invo clean.

Let R be a ring with an identity and S be a ring (not necessary unitary) which is an (R, R)-bimodule such that $\left(s_{1} s_{2}\right) a=s_{1}\left(s_{2} a\right), a\left(s_{1} s_{2}\right)=\left(a s_{1}\right) s_{2}$ and $\left(s_{1} a\right) s_{2}=s_{1}\left(a s_{2}\right)$ for all $a \in R, s_{1}, s_{2} \in S$. The ideal-extension $I(R, S)$ of R by S is defined as the additive abelian group $I(R, S)=R \oplus S$ with multiplication $\left(a_{1}, s_{1}\right)\left(a_{2}, s_{2}\right)=\left(a_{1} a_{2}, a_{1} s_{2}+s_{1} a_{2}+s_{1} s_{2}\right)$. If $g(x)=\left(a_{0}, s_{0}\right)+\left(a_{1}, s_{1}\right) x+$ $\cdots+\left(a_{n}, s_{n}\right) x^{n} \in C(I(R, S))[x]$, then clearly $g_{R}(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in$ $C(R)[x]$.

Proposition 3.4. Let R and S be as above. If $I(R, S)$ is $g(x)$-invo clean, then R is $g_{R}(x)$-invo clean.

Proof. If we define $\mu_{R}: I(R, S) \rightarrow R$ by $\mu_{R}(r, s)=r$, then μ_{R} is a ring epimorphism. The result follows by Corollary 3.2.

Let R be a ring and $\alpha: R \rightarrow R$ be a ring endomorphism. By $R[[x, \alpha]]$ we denote the ring of skew formal power series over R, that is all formal power series in x with coefficients from R with multiplication defined by $x r=\alpha(r) x$ for all $r \in R$. In particular, $R[[x]]=R\left[\left[x, 1_{R}\right]\right]$ is the ring of formal power series over R. The skew polynomial ring $R[x, \alpha]$ can be defined in an analogous way. One can prove that $R[[x, \alpha]] \simeq I(R,\langle x\rangle)$ where $\langle x\rangle$ is the ideal generated by x.

Corollary 3.5. Let R be a ring and $\alpha: R \rightarrow R$ be a ring endomorphism. If $R[[x, \alpha]]$ (or in particular $R[[x]]$) is $g(x)$-invo clean, then R is $g_{\mu}(x)$-invo clean where $\mu: R[[x, \alpha]] \rightarrow R$ is defined by $\mu(f)=f(0)$.

In general, the ring of polynomials $R[x]$ over a ring R is not $g(x)$-clean. This is also true for commutative $g(x)$-invo clean rings.

Lemma 3.6. Let R be a commutative ring and $f=\sum_{i=0}^{n} a_{i} x^{i} \in R[x]$ be an involution element. Then a_{0} is an involution and a_{i} is nilpotent for each i.
Proof. Since f is involution, $f^{2}=1$. So $a_{0}^{2}=1$. Therefore, a_{0} is an involution. Now, to end the proof, it is enough to show that for each prime ideal P of R; every $a_{i} \in P$. Since P is prime, thus $(R / P)[x]$ is an integral domain. Define $\varphi: R[x] \rightarrow(R / P)[x]$ by $\varphi\left(\sum_{i=0}^{n} a_{i} x^{i}\right)=\sum_{i=0}^{n}\left(a_{i}+P\right) x^{i}$. Clearly, φ is an epimorphism. But $\varphi(f) \varphi(f)=\varphi(1)$, and $\operatorname{so} \operatorname{deg}(\varphi(f) \varphi(f))=\operatorname{deg}(\varphi(1))$. So, $\operatorname{deg}(\varphi(f))=0$. Thus, $a_{1}+P=a_{2}+P=\cdots=a_{n}+P=P$, as required.

Theorem 3.7. If R is a commutative ring, then $R[x]$ is not invo-clean (hence not $\left(x^{2}-x\right)$-invo clean $)$.

Proof. We show that x is not invo-clean in $R[x]$. Suppose that $x=v+e$, where $v \in \operatorname{Inv}(R[x])$ and $e \in \operatorname{Id}(R[x])$. Since $\operatorname{Id}(R)=\operatorname{Id}(R[x])$ and $x=v+e$, so $x-e$ is an involution. Hence, by Lemma 3.6, 1 should be nilpotent, which is a contradiction.

A Morita context (A, B, V, W, ψ, ϕ) consists of two rings A, B, two bimodules ${ }_{A} V_{B},{ }_{B} W_{A}$ and a pair of bimodule homomorphisms $\psi: V \otimes_{B} W \rightarrow A$ and $\phi: W \otimes_{A} V \rightarrow B$, such that $\psi(v \otimes w) v^{\prime}=v \phi\left(w \otimes v^{\prime}\right), \phi(w \otimes v) w^{\prime}=$ $w \psi\left(v \otimes w^{\prime}\right)$. With such a Morita context we associate the ring $T=\left[\begin{array}{cc}A & V \\ W & B\end{array}\right]=$ $\left\{\left[\begin{array}{ll}a & v \\ w & b\end{array}\right]: a \in A, b \in B, v \in V, w \in W\right\}$ under the usual matrix addition and multiplication defined as:

$$
\left[\begin{array}{cc}
a & v \\
w & b
\end{array}\right]\left[\begin{array}{cc}
a^{\prime} & v^{\prime} \\
w^{\prime} & b^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
a a^{\prime}+\psi\left(v \otimes w^{\prime}\right) & a v^{\prime}+v b^{\prime} \\
w a^{\prime}+b w^{\prime} & \phi\left(w \otimes v^{\prime}\right)+b b^{\prime}
\end{array}\right] .
$$

We call T a Morita context ring. If $g(x)=\left[\begin{array}{ll}a_{0} & v_{0} \\ w_{0} & b_{0}\end{array}\right]+\left[\begin{array}{ll}a_{1} & v_{1} \\ w_{1} & b_{1}\end{array}\right] x+\cdots+\left[\begin{array}{ll}a_{n} & v_{n} \\ w_{n} & b_{n}\end{array}\right] x^{n} \in$ $C(T)[x]$, then clearly $g_{A}(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in C(A)[x]$ and $g_{B}(x)=$ $b_{0}+b_{1} x+\cdots+b_{n} x^{n} \in C(B)[x]$.
Proposition 3.8. Let $T=\left[\begin{array}{cc}A & V \\ W & B\end{array}\right]$ be a Morita context with $\psi, \phi=0$. If T is $g(x)$-invo clean, then A is $g_{A}(x)$-invo clean and B is $g_{B}(x)$-invo clean.
Proof. Assume that T is $g(x)$-invo clean with $\psi, \phi=0$. Let $I=\left[\begin{array}{cc}0 & V \\ W & B\end{array}\right]$ and $J=\left[\begin{array}{cc}A & V \\ W & B\end{array}\right]$. Then clearly I and J are ideals of T and moreover, $T / I \cong A$ and $T / J \cong B$. It follows by Corollary 3.2 that A is $g_{A}(x)$-invo clean and B is $g_{B}(x)$-invo clean.
Corollary 3.9. Let A, B be two rings and M be an (A, B)-bimodule. Let $T=\left[\begin{array}{cc}A & M \\ 0 & B\end{array}\right]$ be the formal triangular matrix ring. If T is $g(x)$-invo clean, then A is $g_{A}(x)$-invo clean and B is $g_{B}(x)$-invo clean.

In the following proposition, we consider a particular case of formal triangular matrix rings. Let R be a commutative ring and M an R-module. The trivial extension of R by M is the (commutative) ring:

$$
R(M)=\left\{\left[\begin{array}{cc}
r & m \\
0 & r
\end{array}\right]: r \in R, m \in M\right\}
$$

with the usual matrix addition and multiplication. We note that if $\left[\begin{array}{c}r \\ 0 \\ 0 \\ r\end{array}\right] \in$ $\operatorname{Inv}(R(M))$, then clearly $r \in \operatorname{Inv}(R)$. We recall that R naturally embeds into $R(M)$ via $r \rightarrow\left[\begin{array}{cc}r & 0 \\ 0 & r\end{array}\right]$. Thus any polynomial $g(x)=\sum_{i=0}^{n} a_{i} x^{i} \in R[x]$ can be written as $g(x)=\sum_{i=0}^{n}\left[\begin{array}{cc}r_{i} & 0 \\ 0 & r_{i}\end{array}\right] x^{i} \in R(M)[x]$ and conversely.
Proposition 3.10. Let R be a commutative ring, M an R-module and $2 M=0$. Then the idealization $R(M)$ of R and M is $g(x)$-invo clean if and only if R is $g(x)$-invo clean.
Proof. (\Rightarrow) Note that $R \simeq R(M) / \widetilde{M}$ where $\widetilde{M}=\left\{\left[\begin{array}{cc}0 & m \\ 0 & 0\end{array}\right]: m \in M\right\}$. Hence R is $g(x)$-invo clean by Corollary 3.2.
$\Leftarrow)$ Let $g(x)=\sum_{i=0}^{n} a_{i} x^{i} \in R[x]$ and $r \in R$. Since R is $g(x)$-invo clean, we have $r=v+s$, where $v \in \operatorname{Inv}(R)$ and $g(s)=0$. Then for $m \in M$, $\left[\begin{array}{ll}r & m \\ 0 & r\end{array}\right]=\left[\begin{array}{cc}v & m \\ 0 & v\end{array}\right]+\left[\begin{array}{ll}s & 0 \\ 0 & s\end{array}\right]$, where $\left[\begin{array}{cc}v & m \\ 0 & v\end{array}\right] \in \operatorname{Inv}(R(M)($ since $2 M=0)$. Moreover, we have:

$$
\begin{aligned}
g\left(\left[\begin{array}{ll}
s & 0 \\
0 & s
\end{array}\right]\right) & =a_{0}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+a_{1}\left[\begin{array}{ll}
s & 0 \\
0 & s
\end{array}\right]+a_{2}\left[\begin{array}{cc}
s^{2} & 0 \\
0 & s^{2}
\end{array}\right]+\cdots+a_{n}\left[\begin{array}{cc}
s^{n} & 0 \\
0 & s^{n}
\end{array}\right] \\
& =\left[\begin{array}{cc}
a_{0}+a_{1} s+a_{2} s^{2}+\cdots+a_{n} s^{n} & a_{0}+a_{1} s+a_{2} s^{2}+\cdots+a_{n} s^{n}
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
\end{aligned}
$$

Therefore, $R(M)$ is $g(x)$-invo clean.

4. $\left(x^{2}-x\right)$-invo clean rings

Let A and B be two commutatives rings, let J be an ideal of B and let $f: A \longrightarrow B$ be a ring homomorphism. The amalgamation of A with B along J with respect to f is defined as $A \bowtie^{f} J=\{(a, f(a)+j) \mid a \in A, j \in J\}$. It is easy to check that $A \bowtie^{f} J$ is a subring of $A \times B$ (with the usual componentwise operations). For more properties of $A \bowtie^{f} J$, one can see [11, 12]. In the following theorem, we investigate the invo-cleanness (hence the $\left(x^{2}-x\right)$-invo cleanness) of $A \bowtie^{f} J$. Recall that a ring R is called invo-clean if every $r \in R$ can be written as $r=v+e$, where $v \in \operatorname{Inv}(R)$ and $e \in \operatorname{Id}(R)$. If, in addition, the existing idempotent e is unique, then R is called uniquely invo-clean.

Theorem 4.1. Let $f: A \longrightarrow B$ be a ring homomorphism and J be an ideal of B.
(1) If $A \bowtie^{f} J$ is an invo-clean (resp., a uniquely invo-clean) ring, then A is an invo-clean (resp., a uniquely invo-clean) ring and $f(A)+J$ is an invo-clean ring.
(2) Assume that $\frac{f(A)+J}{J}$ is uniquely invo-clean. Then $A \bowtie^{f} J$ is an invoclean ring if and only if A and $f(A)+J$ are invo-clean rings.
Proof. (1) If $A \bowtie^{f} J$ is an invo-clean, we know by [11, Prop. 5.1] that A and $f(A)+J$ are homomorphic images of $A \bowtie^{f} J$, and so by [9, Lemma 2.1], A and
$f(A)+J$ are invo-clean. Assume now that $A \bowtie^{f} J$ is uniquely invo-clean and consider $v+e=v^{\prime}+e^{\prime}$ where $v, v^{\prime} \in \operatorname{Inv}(A)$ and $e, e^{\prime} \in \operatorname{Id}(A)$. Then $(v, f(v))+$ $(e, f(e))=\left(v^{\prime}, f\left(v^{\prime}\right)\right)+\left(e^{\prime}, f\left(e^{\prime}\right)\right)$ and clearly $(v, f(v)),\left(v^{\prime}, f\left(v^{\prime}\right)\right) \in \operatorname{Inv}\left(A \bowtie^{f}\right.$ $J)$ and $(e, f(e)),\left(e^{\prime}, f\left(e^{\prime}\right)\right) \in I d\left(A \bowtie^{f} J\right)$. Thus, $(v, f(v))=\left(v^{\prime}, f\left(v^{\prime}\right)\right)$ and $(e, f(e))=\left(e^{\prime}, f\left(e^{\prime}\right)\right)$. Hence $v=v^{\prime}$ and $e=e^{\prime}$. Consequently, A is uniquely invo-clean.
(2) If $A \bowtie^{f} J$ is invo-clean, then so A and $f(A)+J$ by (1). Conversely, assume that A and $f(A)+J$ are invo-clean rings and consider $(a, j) \in A \times J$. Since A is invo-clean, we write that $a=v+e$ for some $v \in \operatorname{Inv}(A)$ and $e \in \operatorname{Id}(A)$. Furthermore, since $f(A)+J$ is invo-clean, $f(a)+j=(f(x)+$ $k)+(f(y)+l)$ with $(f(x)+k)$ and $(f(y)+l)$ are respectively involution and idempotent element of $f(A)+J$. It is clear that $\overline{f(x)}=\overline{f(x)+k}$ (resp. $\overline{f(v)}$) and $\overline{f(y)}=\overline{f(y)+l}$ (resp. $\overline{f(e)}$) are respectively involution and idempotent element of $\frac{f(A)+J}{J}$, and we have $\overline{f(a)}=\overline{f(v)}+\overline{f(e)}=\overline{f(x)}+\overline{f(y)}$. Thus, $\overline{f(v)}=\overline{f(x)}$ and $\overline{f(e)}=\overline{f(y)}$ since $\frac{f(A)+J}{J}$ is uniquely invo-clean. Consider $k, l^{\prime} \in J$ such that $f(x)=f(v)+k^{\prime}$ and $f(y)=f(e)+l^{\prime}$. We have, $(a, f(a)+j)=$ $\left(v, f(v)+k^{\prime}+k\right)+\left(e, f(e)+l^{\prime}+l\right)$, and it is clear that $\left(v, f(v)+k^{\prime}+k\right) \in$ $\operatorname{Inv}\left(A \bowtie^{f} J\right)$ and $\left(e, f(e)+l^{\prime}+l\right) \in I d\left(A \bowtie^{f} J\right)$. Consequently, $A \bowtie^{f} J$ is invo-clean.

Remark 4.2. Let $f: A \longrightarrow B$ be a ring homomorphism and J an ideal of B.
(1) If $B=J$, we have $A \bowtie^{f} J=A \times B$. Hence $A \bowtie^{f} J$ is invo-clean if and only if A and B are invo-clean (by [9, Proposition 2.13]).
(2) If $f^{-1}(J)=\{0\}$, we have $A \bowtie^{f} J \cong f(A)+J$ by [11, Proposition $5.1(3)]$. Hence, $A \bowtie^{f} J$ is invo-clean if and only if $f(A)+J$ is invoclean.

In a duplication ring, we obtain:
Corollary 4.3. Let A be a ring and I an ideal such that A / I is an uniquely invo-clean. Then $A \bowtie I$ is invo-clean if and only if so is A.

Proof. In this case, we have $f(A)+I=A+I=A$. Thus Theorem 4.1 completes the proof.

Proposition 4.4. Let $f: A \longrightarrow B$ be a ring homomorphism and let J be an ideal of B such that $J \subset I d(B)$. Then $A \bowtie^{f} J$ is invo-clean if and only if A is invo-clean.

Proof. Let $(a, j) \in A \times J$. Hence there exist an idempotent e and an involution v such that $a=v+e$ (since A is invo-clean). Hence $(a, f(a)+j)=(v, f(v))+$ $(e, f(e)+j)$, and then for all $j \in J$, we have $2 j=0$ and $j^{2}=j$ (since $J \subset I d(B))$. Therefore, $(f(e)+j)^{2}=(f(e))^{2}+2 j f(e)+j^{2}=(f(e)+j)$, and so $(a, f(a)+j)$ is an invo-clean element of $A \bowtie^{f} J$. Thus $A \bowtie^{f} J$ is invo-clean. The converse implication is clear.

For more examples of invo-clean rings, we consider the method of idealization. Let A be a commutative ring and E an A-module. Nagata [16] introduced the idealization $A \propto E$ of A and E. The idealization of A and E (or trivial extension ring of A by E) is the ring $A \propto E$ with multiplication given by $\left(a_{1}, e_{1}\right)\left(a_{2}, e_{2}\right)=\left(a_{1} a_{2}, a_{1} e_{2}+a_{2} e_{1}\right)$. This construction has been extensively studied and has many applications in different contexts, see [2,3].

Lemma 4.5. If A is an invo-clean ring, then any $q \in \operatorname{Nil}(A)$ satisfies the equation $q^{2}+2 q=0$.

Proof. If $q \in \operatorname{Nil}(A)$, write $q=v+e$ where $v \in \operatorname{Inv}(A)$ and $e \in \operatorname{Id}(A)$. Thus $(-v)=(-q)+e$, where $(-v) \in \operatorname{Inv}(A)$ and $(-q) \in \operatorname{Nil}(A)$. Then by [9, Corollary 2.6], we conclude that $e=1$. Therefore $q=v+1$, and hence $q^{2}+2 q=0$.

Proposition 4.6. Let A be a commutative ring, E an A-module and $R:=$ $A \propto E$ the trivial extension ring of A by E. Then R is invo-clean if and only if A is invo-clean and $2 E=0$.

Proof. (\Rightarrow) If $A \propto E$ is invo-clean, then $A \cong(A \propto E) /(0 \propto E)$ is invo-clean by [9, Lemma 2.1]. On the other hand, let $x \in E$. Then by Lemma 4.5 $(0, x)^{2}+2(0, x)=(0,0)$ (since $(0, x) \in N i l(A \propto E)$ and $A \propto E$ is invo-clean), which shows that $2 x=0$. Hence $2 E=0$.
(\Leftarrow) Let $(a, x) \in A \propto E$ and write $a=v+e$, where $v \in \operatorname{Inv}(A)$ and $e \in \operatorname{Id}(A)$. Thus $(a, x)=(v, x)+(e, 0)$, and it is clear that $(v, x) \in \operatorname{Inv}(A \propto E)$ and $(e, 0) \in I d(A \propto E)$. Consequently, $A \propto E$ is invo-clean.

Clearly, invo-clean rings are clean rings. But in general, clean rings may not be invo-clean. Then to enrich the literature with new example of clean ring but not invo-clean, we propose the next example.

Example 4.7. Let $A:=\mathbb{Z}_{5}$ and let $R:=A \propto A$ be the trivial ring extension of A by A. Then:
(1) By $[8$, Corollary 2.12], R is a clean ring since A is a clean ring.
(2) Since A is not invo-clean, R is not invo-clean by Proposition 4.6.

If G is a group and R is a ring, we denote the group ring over R by $R G$. If $R G$ is invo-clean, then R is invo-clean by [9, Lemma 2.1]. But it seems to be difficult to characterize R and G for which $R G$ is invo-clean in general. In the following we will give some rings and groups such that $R G$ is invo-clean.

Proposition 4.8. Let R be a ring where $2 \in U(R)$ and $G=\{1, g\}$ be a group with two elements. Then $R G$ is invo-clean if and only if R is invo-clean.

Proof. One direction is trivial.
Conversely, if R is invo-clean, since 2 is invertible, by [14, Proposition 3] $R G \cong R \times R$. Hence, $R G$ is invo-clean by [9, Proposition 2.13].

In the next proposition, we determine conditions under which the group ring $R G$ is invo-clean where $G=C_{n}$ the cyclic group of order n.
Proposition 4.9. Let R be a ring and $2 \in U(R)$. Then, $R C_{4}$ is invo-clean if and only if R is invo-clean.

Proof. As $2 \in U(R), R C_{4} \cong R \times R \times R[x] /\left\langle x^{2}+1\right\rangle$ by Yi and Zhou [24, Lemma 3.3]. But as $2 \in U(R)$, we have $R[x] /\left\langle x^{2}+1\right\rangle \cong R C_{2} \cong R \times R$. Therefore, the claim follows.

Proposition 4.10. If R is an invo-clean ring with $2 \in U(R)$, then $R C_{2^{k}}$ is invo-clean for all $k \geq 0$.
Proof. We know that $R C_{2^{k}} \cong\left(R C_{k}\right) C_{2}$. So it suffices to show that if $R C_{2}$ is invo-clean. But $R C_{2}$ is invo-clean by Proposition 4.8, as required.

5. Unitly invo-clean rings

In this section, we explore and discuss the original notion of unitly invo-clean rings stated in Problem 3 of [9].

Definition ([9]). A ring R is called unitly invo-clean if $U(R)=\operatorname{Inv}(R)+\operatorname{Id}(R)$, i.e., for each $a \in U(R)$, there exist $v \in \operatorname{Inv}(R)$ and $e \in \operatorname{Id}(R)$ such that $a=v+e$.
Remark 5.1. Although homomorphic images of units, idempotents and involutions are again units, idempotents and involutions, respectively, it follows in general that even an epimorphic image of a unitly invo-clean ring need not be unitly invo-clean. For instance, the ring \mathbb{Z} is unitly invo-clean, while \mathbb{Z}_{5} is not.

However, the following is valid:
Proposition 5.2. Suppose that R is a ring with $I \subseteq J(R)$. Then R / I is a unitly invo-clean ring provided that R is a unitly invo-clean ring.

Proof. We have here $I \subseteq J(R)$, which implies that $U(R) \rightarrow U(R / I)$ is surjective. Hence if $w=u+I \in U(R / I)$, then $u \in U(R)=\operatorname{Inv}(R)+\operatorname{Id}(R)$, so that $u=v+e$, where $v \in \operatorname{Inv}(R)$ and $e \in \operatorname{Id}(R)$. Thus $w=u+I=$ $(v+I)+(e+I) \in \operatorname{Inv}(R / I)+\operatorname{Id}(R / I)$, as needed.

Corollary 5.3. Let R be a ring. If R is a unitly invo-clean, then $R[[x]] /\left(x^{n}\right)$ $(n \in \mathbb{N})$ is a unitly invo-clean.

Proof. Clearly, $R[[x]] /\left(x^{n}\right)=\left\{a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1} \mid a_{0}, \ldots, a_{n-1}\right\}$. Let $\alpha: R[[x]] /\left(x^{n}\right) \longrightarrow R$ be a morphism such that $\alpha(f)=f(0)$. It is easy to check that α is an R-epimorphism and $\operatorname{ker} \alpha$ is a nil ideal of R, and therefore the result follows from Proposition 5.2.

The nil property of the Jacobson radical can be strengthened by the following observation.

Proposition 5.4. If R is a unitly invo-clean ring, then $J(R)$ is nil with index of nilpotence at most 3 .
Proof. Let $j \in J(R)$. We write $1+j=v+e$, where $v \in \operatorname{Inv}(R)$ and $e \in \operatorname{Id}(R)$. In both cases, since $J(R)+U(R)=U(R)$, we derive that $v-j=1-e \in$ $U(R) \cap I d(R)=\{1\}$, and hence $e=0$. Thus $j=v-1$ implies that $j^{2}=-2 j$. Consequently, $j^{3}=-2 j^{2}$, then $j^{3}=4 j$. Replacing j by $2 j$ in the last equality, we obtain $8 j^{3}=8 j$ whence $8 j\left(1-j^{2}\right)=0$. Since $1-j^{2} \in 1+J(R) \subseteq U(R)$, it follows that $8 j=0$. On the other hand, substituting j by $2 j$ in $j^{2}=-2 j$ and multiplying both sides of these two equalities by 4 , we have $4 j^{2}=-4 j=-8 j$, i.e., $4 j=0$. Finally, $j^{3}=4 j=0$.

We now arrange to prove the following.
Proposition 5.5. If R is a unitly invo-clean ring with $2 \in U(R)$, then $\operatorname{Nil}(R)$ $=J(R)=\{0\}$.
Proof. Since in view of Proposition 5.4 it must be that $J(R) \subseteq N i l(R)$, we need to consider only nilpotent elements. To that aim, suppose $q \in \operatorname{Nil}(R)$. Then $1+q \in U(R)$. Write $1+q=v+e$, where $v \in \operatorname{Inv}(R)$ and $e \in \operatorname{Id}(R)$ (since R is a unitly invo-clean ring). Thus $v=q+(1-e)$. Appealing to [11, Corollary 2.6], we conclude that $e=0$. Therefore $q=v-1$, and hence $q^{2}=2-2 v=-2(v-1)=-2 q$. This leads to $q(q+2)=0$. Since $q+2 \in U(R)$, we have $q=0$, as expected.

Proposition 5.6. Let R be a unitly invo-clean ring and $4=0$. Then $Z(R)$ is a unitly invo-clean ring.

Proof. For any $z \in U(Z(R)) \subseteq U(R)$, write $z=v+e$, where $v \in \operatorname{Inv}(R)$ and $e \in I d(R)$. It follows by squaring that $z^{2}-2 z e=1-e$. Squaring again, we deduce that $z^{4}=1-e$, so that $e=1-z^{4} \in Z(R)$. We therefore infer that $v \in Z(R)$, and hence $z=v+e \in \operatorname{Inv}(Z(R))+\operatorname{Id}(Z(R))$.

Proposition 5.7. Suppose that R is a nil-clean ring. Then R is unitly invoclean if and only if any $q \in \operatorname{Nil}(R)$ satisfies the equation $q^{2}+2 q=0$.

Proof. (\Rightarrow) As in proof of Proposition 5.5, we derive that $q^{2}=-2 q$, and then $q^{2}+2 q=0$.
(\Leftarrow) Given $r \in U(R)$, we write $r=q+e$, where $q \in \operatorname{Nil}(R)$ and $e \in \operatorname{Id}(R)$ (since R is a nil-clean ring). Thus $r=q+e=(1+q)-(1-e)$. One checks that $(1+q)^{2}=q^{2}+2 q+1=1$ and $(1-e)^{2}=1-e$, as required.

As an interesting consequence, we obtain the following one.
Corollary 5.8. Let R be a nil-clean ring of characteristic 2 . Then R is unitly invo-clean if and only if the index of nilpotence of R is 2 .

Remark 5.9. In regard to the above statement, it is worth noticing that \mathbb{Z}_{8} is both unitly invo-clean and nil-clean containing the element 2 of nilpotence
index 3 . However, it is readily seen that 2 satisfies the equality $q^{2}+2 q=0$ because $2^{2}+2 \cdot 2=8=0$.

Likewise, $\mathbb{Z}_{16}=\mathbb{Z}_{2^{4}}$ is a nil-clean ring which is not necessarily unitly invoclean (compare with Corollary 5.8). In fact, \mathbb{Z}_{16} is indecomposable, that is, the only idempotents are 0 and 1 as well as all involutions are $1,7,9$ and 15 . So, the unit 5 cannot be represented as a sum of an involution and an idempotent, as expected.

Proposition 5.10. If R is a unitly invo-clean ring with $3 \in U(R)$, then $24=0$. In particular, $6 \in \operatorname{Nil}(R)$.

Proof. Write $3=v+e$, where v is an involution and e is an idempotent. Thus $(3-v)^{2}=3-v$ implies that $5 v=7$, whence $24=0$ by squaring both sides of the equality. In addition, $6^{3}=216=24 \cdot 9=0$, and hence $6 \in \operatorname{Nil}(R)$, as asserted.

Acknowledgement. The authors thank the referee for his suggestions, remarks and comments thorough reading of the manuscript.

References

[1] M.-S. Ahn and D. D. Anderson, Weakly clean rings and almost clean rings, Rocky Mountain J. Math. 36 (2006), no. 3, 783-798. https://doi.org/10.1216/rmjm/1181069429
[2] M. M. Ali, Idealization and theorems of D. D. Anderson, Comm. Algebra 34 (2006), no. 12, 4479-4501. https://doi.org/10.1080/00927870600938837
[3] D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009), no. 1, 3-56. https://doi.org/10.1216/JCA-2009-1-1-3
[4] G. Borooah, A. J. Diesl, and T. J. Dorsey, Strongly clean matrix rings over commutative local rings, J. Pure Appl. Algebra 212 (2008), no. 1, 281-296. https://doi.org/10. 1016/j.jpaa.2007.05.020
[5] V. Camillo and J. J. Simón, The Nicholson-Varadarajan theorem on clean linear transformations, Glasg. Math. J. 44 (2002), no. 3, 365-369. https://doi.org/10.1017/ S0017089502030021
[6] V. P. Camillo and H.-P. Yu, Exchange rings, units and idempotents, Comm. Algebra 22 (1994), no. 12, 4737-4749. https://doi.org/10.1080/00927879408825098
[7] H. Chen, On uniquely clean rings, Comm. Algebra 39 (2011), no. 1, 189-198. https: //doi.org/10.1080/00927870903451959
[8] M. Chhiti, N. Mahdou, and M. Tamekkante, Clean property in amalgamated algebras along an ideal, Hacet. J. Math. Stat. 44 (2015), no. 1, 41-49.
[9] P. V. Danchev, Invo-clean unital rings, Commun. Korean Math. Soc. 32 (2017), no. 1, 19-27. https://doi.org/10.4134/CKMS.c160054
[10] \qquad , Corners of invo-clean unital rings, Pure Mathematical Sciences (2018), 27-31.
[11] M. D'Anna, C. A. Finocchiaro, and M. Fontana, Amalgamated algebras along an ideal, in Commutative algebra and its applications, 155-172, Walter de Gruyter, Berlin, 2009.
[12] , Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra 214 (2010), no. 9, 1633-1641. https://doi.org/10.1016/j.jpaa. 2009.12.008
[13] L. Fan and X. Yang, On rings whose elements are the sum of a unit and a root of a fixed polynomial, Comm. Algebra 36 (2008), no. 1, 269-278. https://doi.org/10.1080/ 00927870701665461
[14] J. Han and W. K. Nicholson, Extensions of clean rings, Comm. Algebra 29 (2001), no. 6, 2589-2595. https://doi.org/10.1081/AGB-100002409
[15] H. A. Khashan and A. H. Handam, $g(x)$-nil clean rings, Sci. Math. Jpn. 79 (2016), no. 2, 145-154.
[16] A. Lambert and T. G. Lucas, Nagata's principle of idealization in relation to module homomorphisms and conditional expectations, Kyungpook Math. J. 40 (2000), no. 2, 327-337.
[17] W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977), 269-278. https://doi.org/10.2307/1998510
[18] _ Strongly clean rings and Fitting's lemma, Comm. Algebra 27 (1999), no. 8, 3583-3592. https://doi.org/10.1080/00927879908826649
[19] W. K. Nicholson and Y. Zhou, Endomorphisms that are the sum of a unit and a root of a fixed polynomial, Canad. Math. Bull. 49 (2006), no. 2, 265-269. https://doi.org/ 10.4153/CMB-2006-027-6
[20] Z. Wang and J. Chen, A note on clean rings, Algebra Colloq. 14 (2007), no. 3, 537-540. https://doi.org/10.1142/S1005386707000491
[21] G. Xiao and W. Tong, n-clean rings and weakly unit stable range rings, Comm. Algebra 33 (2005), no. 5, 1501-1517. https://doi.org/10.1081/AGB-200060531
[22] , n-clean rings, Algebra Colloq. 13 (2006), no. 4, 599-606. https://doi.org/10. 1081/AGB-200060531
[23] Y. Ye, Semiclean rings, Comm. Algebra 31 (2003), no. 11, 5609-5625. https://doi. org/10.1081/AGB-120023977
[24] Z. Yi and Y. Zhou, Baer and quasi-Baer properties of group rings, J. Aust. Math. Soc. 83 (2007), no. 2, 285-296. https://doi.org/10.1017/S1446788700036909

Mourad El Maalmi
Faculty of Sciences Dhar El Mahraz
Sidi Mohamed Ben Abdellah University
Fez, Morocco
Email address: mouradmalam@gmail.com
Hakima Mouanis
Faculty of Sciences Dhar El Mahraz
Sidi Mohamed Ben Abdellah University
Fez, Morocco
Email address: hmouanis@yahoo.fr

[^0]: Received April 20, 2019; Revised September 21, 2019; Accepted November 15, 2019.
 2010 Mathematics Subject Classification. 13A99, 16D60, 16 U99.
 Key words and phrases. Invo-clean ring, $g(x)$-invo clean ring, unitly invo-clean ring, amalgamated algebra.

