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ESSENTIAL EXACT SEQUENCES

ISMAEL AKRAY AND AMIN ZEBARI

ABSTRACT. Let R be a commutative ring with identity and M a unital
R-module. We give a new generalization of exact sequences called e-exact

sequences. A sequence 0 — A i> B % C — 0 is said to be e-exact if
f is monic, Imf <. Kerg and Img <. C. We modify many famous
theorems including exact sequences to one includes e-exact sequences like
3 x 3 lemma, four and five lemmas. Next, we prove that for torsion-free
module M, the contravariant functor Hom(—, M) is left e-exact and the
covariant functor M ® — is right e-exact. Finally, we define e-projective
module and characterize it. We show that the direct sum of R-modules
is e-projective module if and only if each summand is e-projective.

1. Introduction

Throughout this article R will denote a commutative ring with identity and
M a unitary R-module. Here we use monic and epic to denote monomorphism
and epimorphism. A submodule N of a module M is called essential (large) in
M if the intersection of NV with each nonzero submodule of M is nonzero and we
write N <. M. In this case, M is called essential extension of V. Equivalently,
N is essential submodule of M if N N Rx # 0 for any nonzero element z € M
([1, p- 75]). So in particular, a nonzero ideal I of R is an essential ideal of R
if I'N K # 0 for any nonzero ideal K of R which is equivalent to the condition
INRx # 0 for any nonzero element € R. An element m in an R-module M is
torsion element if there is a nonzero element r in R such that rm = 0. The set of
all torsion elements T'(M) is a submodule of M called torsion submodule of M.
A torsion module is a module whose elements are all torsion that is T'(M) = M.
A torsion-free module is a module whose elements are not torsion, other than
0, that is T (M) = 0. A sequence of R-modules and R-morphisms

fi—1 fi
M;_1 M; M;q
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is said to be exact at M; if Im(f;_1) = Ker(f;). In this paper we generalize this
notion to e-exact sequence using essential (large) submodule, that is, instead
of saying Im(f;_1) is equal to Ker(f;) we say Im(f;_1) is large in Ker(f;). For
more details on the notions used in this paper see [2] and [3].

2. Essential exact sequences

Definition. A sequence of R-modules and R-morphisms

fi- fi
M = M, Miyq

is said to be essential exact briefly (e-exact) at M; if Im(f;—1) <. Ker(f;), and
to be e-exact if it is e-exact at each M;. In particular, a sequence of R-modules
and R-morphisms

f1 f2

0 Ay As As 0

is a short e-exact sequence if and only if Ker(f1) = 0, Im(f1) <. Ker(f2) and
Im(fg) Se A3.

Definition. An R-morphism f : M — N is called e-epic if Imf <. N. In
addition if Kerf = 0, then f is called essential monic.

The next example shows that the class of all e-exact sequences is larger than
the class of exact sequences.

Example 2.1. Consider the short e-exact sequence

0 w2z Pz gz o

where f1 and fo are defined as f1(4n) = 2n and fa(n) = 2n+4Z. Since fy is
not epic, the sequence is not exact.

Lemma 2.2 (Four lemma with e-exact sequence). Consider the commutative
diagram of an R-modules and R-morphisms with e-exact rows

A, f1 A, f2 As f3 A,
oo e ]
Bl g1 B2 g2 33 g3 B4

where R is a domain.

(1) If t1, t3 are e-epic, t4 is monic and Bg is torsion-free R-module, then
to 1s e-epic.

(2) Ifty is e-epic and to, ty are monic, then Ker(t3) is torsion module. In
addition, if As is torsion-free R-module, then t3 is monic.
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Proof. (1) Let by be a non-zero element of By. Then g¢o(b2) € Bs. Since
Im(t3) <. Bs, Im(t3) N Rga(b2) # 0. So there exist 0 # r € R and a3 €
A3 such that t3((13) = ng(bg). Then t4f3(a3) = g3(t3(a3)) = gg(’f‘gg(bg)) =
rg3(g2(b2)) = 0. As t4 is monic, f3(as) € Ker(ts) = 0. So f3(as) = 0 and
as € Ker(fs). Since Im(f2) <. Ker(f3), there exist as € As and s € R such that
fa(az) = saz # 0. Then rsga(by) = stz(as) = tz(saz) = t3(f2(az)) = gata(az)
and rsby —ta(az2) € Ker(ga). Since we have Im(g;) NR(rsbs —ta(az)) # 0, there
exist by € By and k € R such that g1 (b1) = k(rsbe —ta(az2)). Now, by € By and
Im(t1) < By. Then, there exists 0 # g € R such that t(a1) = gb;. Therefore

t2fi(a1) = giti(a1) = g1(gb1) = qg1(b1) = q(krsba — kt2(az2)),
tafi(a1) = (gkrs)ba — qkta(az),
ta(gkas + f1(a1)) = (gkrs)bs.

Hence from the last equation and being B, a torsion-free module, we con-
clude that Im(¢2) N Rby # 0 and ¢y is e-epic.

(2) Suppose az € Ker(tz). Then t3(as) = 0. By commutativity of the
last square of the diagram, t4f3(as) = gsts(as) = 0, so f3(as) € Ker(t4) and
monicness of ¢4 gives us ag € Ker(f3). Since Im(fz) <. Ker(fs), there exist
as € Ay and r € R such that fa(ag) = raz # 0 and gota(ag) = tzfa(az) =
ts(rasz) = 0, so ta(az) € Ker(gz). Again, there exist by € By and s € R such
that g1(b1) = sta(az) # 0. But Im(t1) <. By, so there exist a; € Ay and k € R
such that t1(a1) = kby. Then ksta(as) = kg1(b1) = giti(a1) = t2f1(a1) and
ta(ksaz — fi(a1)) = 0. The monicness of to implies ksas = f1(a1). Therefore
ksraz = ksfa(az) = fa(ks(az)) = fafi(a1) = 0 which means ksraz = 0. Hence
Ker(t3) is torsion module. Being Aj torsion-free module gives that Ker(t3) =0
and t3 is monic. O

Lemma 2.3 (Five lemma with e-exact sequence). Consider the commutative
diagram of R-modules and R-morphisms with e-exact rows

Ay LA, B AL
AN
B2+ B, —2+B; % B, B;

where R is a domain and As, Bs are torsion-free R-modules.
(1) If to, ty are e-epic and ts is monic, then ts is e-epic.
(2) Ifty is e-epic and ta, t4 are monic, then ts is monic.

Proof. (1) Suppose that b is a non-zero element of Bs. Since g3(bs) € By
and Im(ty) <. By, Im(t4) N Rgs(bs) # 0. So, there exist ay € Ay and 0 #
r € R such that t4(aq) = rg3(bs). Also tsfi(as) = gats(as) = ga(rgs(bs)) =
rgag3(bs) = 0. Thus fi(as) € Ker(ts) = 0 and ay4 € Ker(f4). By assumption
Im(f3) <. Ker(fs) and hence Im(f3) N Ray # 0. So, there exist az € As
and 0 # s € R such that fs(asz) = sas and gs(rsbs — t3(as)) = gs(rsbs) —
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ggtg(ag,) = T‘Sg3(b3) — t4f3(a3) = st4(a4) — t4(SCL4) = 0, that iS, T‘Sbg — t3(a3) S
Ker(gs) and by e-exactness of the second row, we have Im(gy) <. Ker(gs).
Then Im(gs) N R(rsbs — ts(ag)) # 0 and so ga(bs) = q(rsbs — t3(as)) # 0
for some by € By and 0 # g € R. Also Im(t2) <. Bs and so we can find
as € Az and 0 # k € R such that ta(az) = kby. Thus t3(f2(a2) + gkas) =
tsfa(az) + tz(qkas) = gata(az) + qkts(as) = ga(kb) + qkts(az) = kga(b2) +
kts(as) = kq(rsbs—ts(as))+qkts(as) = gkrsbs—kqts(as)+kqts(as) = (qgkrs)bs.
Therefore Im(t3) N Rbs # 0 and t3 is e-epic.

(2) Let ag € Ker(ts). Then t3(as) = 0 and by commutativity of the third
square, t4f3(as) = gstz(asz) = 0. Thus f3(as) € Ker(t4) = 0 and a3 € Ker(f3).
Since Im(f3) <. Ker(f3), there exist as € Ay and 0 # r € R such that
fa(az) = ras and gota(az) = t3fa(az) = tz(rasz) = rtz(az) = 0. Which means
that t2(a2) € Ker(gs). By e-exactness we have Im(gy) N Rta(asz) # 0, so there
exist by € By and 0 # s € R such that g1(b1) = sta(az). Again Im(t;) <. By,
so there exist a1 € A; and 0 # k € R such that ¢1(a1) = kb;. From monicness
of to and the fact that ksta(ag) = kg1(b1) = giti(a1) = taf1(a1) we obtain
that ksas = fi(a1) and so ksraz = ksfa(az) = fafi(a1) = 0. Now torsion-
freeness of Bs implies that ksras = 0 and Ker(t3) is torsion module. The
torsion-freeness of Az gives the monicness of t3. O

We conclude from Lemma 2.3 that if t1, to, t4 and t5 are essential monic,
then so is t3. The following is our version of 3 x 3 lemma using e-exact sequences
instead of exact sequences.

Lemma 2.4 (3 x 3 lemma with e-exact sequence). Consider the commutative
diagram of R-modules and R-morphisms where R is a domain and Az, Az are
torsion-free R-modules:

0 0 0
0 Y LN (AN 0
51 J1 P1
0 B 2By, B, 0
12 J2 p2
0 oo, 2oy 0
0 0 0

If the columns and the two bottom rows are e-exact, then the top row is also
e-exact.
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Proof. To prove that the top row is e-exact, we have to check the following
three conditions:

(1) Ker(f1) = 0.

Take a1 € Ker(f1). Then g1i1(a1) = jifi(a1) = 0 and i1(a1) € Ker(g1).
Since Ker(g1) =0, i1(a1) = 0 and a1 € Ker(i;) = 0. Therefore a; = 0.

(2) Im(f1) <e Ker(f2).

First to prove Im(f;) C Ker(f2). Let as € Im(f;). Then, there exists
a] € Al such that f1 (&1) = Qa2 and glil(al) = j1f1 (&1) = j1 ((12), which means
that ji(az2) € Im(g1) C Ker(ge) and so pifa(az) = gaji(az) = 0. Hence
fa(az) € Ker(p1) = 0 and so az € Ker(f2). Now for essentiality, take az to be
a non-zero element of Ker(f3). Then fy(az) = 0 and g271(az) = p1 f2(az) = 0.
So j1(az2) € Ker(gz) and as Im(g1) <. Ker(gz2), Im(g1) N Rj1(az) # 0. Hence,
there exist 0 # s € R and b; € Bj such that g1(b1) = sj1(az). Also hyiz(by) =
j2g1(b1) = sjaji(az) = 0. Thus iz(b1) € Ker(hy) = 0. By e-exactness of the
first column we get I'm(i;) N Rby # 0. Then, there exist a; € A; and k € R
such that i1(a;) = kby # 0 and so ksji(a2) = g1(kb1) = g1i1(a1) = j1f1(ar).
Thus ji(ksas — fi(a1)) = 0 and as Ker(j1) = 0, ksas = f1(a1). Therefore we
have Im(f;) <. Ker(f2).

(3) Im(f2) Se A3.

Let a3 be a non-zero element of A3 and p;(ag) € Bs. There exist by € Bo
and r € R such that g2(b2) = rp1(as) # 0. By commutativity of the diagram

haja(b2) = paga(be) = rpapi(as) = 0.

That means jo(bs) € Ker(hs) and by e-exactness of the bottom row, there exist
c¢1 € Cy and s € R such that hy(c1) = sja2(be). Again by e-exactness of the
first column there exist m € R and b; € By such that iz(by) = mec;. Then
msjz(ba) = mhy(c1) = hi(mer) = hyia(b1) = jag1(b1). Therefore ja(g1(b1) —
smbg) = 0, so g1(b1) — smbe € Ker(j2). Since Im(j;) <. Ker(jz2), there exist
as € Ay and n € R such that jj(as) = n(g1(b1) — smby) # 0. It is clear that

p1fa(az) = g2j1(az) = nga(g1(b1) — smbz) = —nsmgz(bz).

So p1 fa(as) = —nsmrp;(az) which is equivalent to py(f(az) + nmraz) = 0.
But p; is monic, so fa(az) = —nsmras. Hence Im(fy) <, As. O

A functor F' is called covariant left e-exact if for every short e-exact sequence

0 Al p o 0,
the sequence
0—— F(A) 29 pp) 22 gy

is e-exact and called covariant right e-exact if the sequence

F(f1) F(f2)

F(A)

F(B) F(C)——0
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is e-exact whenever 0 A i B f2 C 0 is e-exact. A functor

F is called covariant e-exact functor if it is both covariant left e-exact functor
and covariant right e-exact functor. Now, suppose S is a multiplicatively closed
subset of a ring R. In what follows, we show that the localization functor is
e-exact functor.

Proposition 2.5. If a sequence of R-modules and R-morphisms

f1 f2

0 A1 AQ A3 0

is e-exact, then so is the sequence

1y STUA i1, ST ol
0—— S A —— S 1A, —5 5 A3 ——0.

Proof. First of all we show that Im(S~1f;) <. Ker(S~!fs). Let az/s be a
non-zero element of Ker(S™1fy). Then S~!fs(az/s) = fa(az)/s = 0 and so
there exists t € S such that tf2(a2) = f2(taz) = 0. Thus tas € Ker(f2). Since
Im(f;) <. Ker(f2), there exist r € R and a; € Ay such that fi(a1) = rtas #
0. Then fi(a1)/s = (rt/1)(az/s), which means S~ fi(a1/s) = (rt/1)(az/s).
Therefore Im(S~1f1) NS~ 1R(ay/s) # 0.

Now to prove Ker(S™1f;) = 0 take a;/s € Ker(S™1f1). Then S™!fi(a;1/s)
= fi(a1)/s = 0. Then there exists t € S such that ¢f1(a1) = f1(ta1) = 0. By
hypotheses Ker(f1) =0, so ta; =0 and a;/s = 0.

Finally, we want to show that Im(S~!f;) <. S~'A3. Suppose that az/s is
a non-zero element of S™!A3 where az € A3z and since Im(fz) <. As, there
exist ag € Ay and r € R such that fa(as) = ras # 0. Also fa(ag)/s =
(r/1)(as/s) which implies that S~! fa(as/s) = (r/1)(as/s). Hence Im(S~1f2) N
S7'R(a3/s) # 0 and the sequence

0— 514, I yg14, L 514, 40
is e-exact. O

A functor G is called contravariant left e-exact if for every short e-exact
sequence

0 A, Lo 0,
the sequence
G 2 G 1
0——a(0) £ a(B) £YY G a)

is e-exact. In the following two results, we discuss the left e-exactness of the
covariant functor Hom(M, —) and the contravariant functor Hom(—, M).

Theorem 2.6. The sequence of R-modules and R-morphisms

f1 f2

0 Ay

As As
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is e-exact if and only if for all R-module B, the sequence

0 — s Hom(B, A1) s Hom(B, 42) >+ Hom(B, A3)

s e-exact.

Proof. (=) First to show that Ker(f;) = 0 take h € Ker(f;). Then f;(h) =
fioh=0s0 fi(h(a1)) =0 for all a1 € A;. Thus h(ay) € Ker(f;) = 0. Hence
h(a1) =0 for all a; € A; and so h = 0. Also to prove Im(f;) <. Ker(f5). We
take a non-zero element g € Ker(f5) and show that Im(f;) N Rg # 0. Since
g € Ker(£5), f5(9) = 0= fa0g. Then Im(g) C Ker(f2), and by e-exactness,
Im(f;) <. Ker(fz), Since g : B — A,, for all b € B,g(b) € Ker(fz) and
Im(f1) N Rg(b) # 0. Then, there exist a; € A; and r € R such that fi(a;) =
rg(b) # 0 and so g(rb) € Im(f1). We define [ : B — Ay by I(b) = a1. Now to
show that [ is well-defined. Let by = be so g(b1) = g(b2) and rg(b1) = rg(b2).
Hence f1(a1) = f1(az2) which implies that a; —ag € Ker(f1) = 0. Thus a; = as
and I(by) = l(ba). Now, we have (f; ol)(b) = f1(I(b)) = f1(a1) = rg(b), which
gives f1 ol = rg. Therefore f;(I) =rg # 0 and Im(f;) N Rg # 0.

(«<=) Let ag be a non-zero element of Ker(f;). We set B = Ker(f2) and define
i: B — Ay to be the identity map. So [f3(i)](a2) = f2(i(a2)) = fa2(a2) = 0,
for all ag € Ker(fz). Then f3(i) = 0 and 0 # ¢* € Ker(f5). Since Im(f;) <.
Ker(f3), there exist I € Hom(B, A1) and r € R such that f;(l) = ri that is
fiol=ri#0. Therefore

0 # rag =ri(az) = f1 ol(az) = fi1(l(az))

and Im(f1) N Ras # 0. Now to prove Ker(f;) = 0, we take B = Ker(f;) and
define i : B — A; to be the identity map. Then for all a; € Ker(f1), [fii](a1) =
fioi(ar) = fi(i(a1)) = fi(a1) = 0. So ff(i(a1)) =0 and i(a1) € Ker(f;) = 0.
Thus a; = 0 and hence Ker(f;) = 0. O

Theorem 2.7. If a sequence of R-modules and R-morphisms

f1 f2

Ay Ay As 0

is e-ezact, then for all torsion-free R-module B, the sequence

0 —— Hom(As3, B) SELIN Hom(As, B) SELNN Hom(A,, B)

is e-exact. The converse is true if As/Im(f3) and As/Im(f;) are torsion-free
R-modules.

Proof. We have to prove that fo* is monic and Im(f3) <. Ker(f;). For this
purpose, take g,h € Hom(As, B) and f3(h) = f5(g). Then ho fo = go fa.
Since Im(f2) <. As, for all non-zero element a3 € As there exist as € As and
r € R such that fa(ag) =rasz #0. So

h(raz) = h(fa(az)) = ho fa(az) = g o fa(az) = g(fa(az)) = g(ras)
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and rh(az) = rg(az) that is r(h(as) — g(az)) = 0. Since B is torsion-free
module, h = g. Therefore f5 is monic. Now let h be a non-zero element of
Ker(fy). Then fif(h) = 0 and ho f; = 0. Since Im(fy) <. Az, for all non-
zero az € As, there exist as € As and r € R such that fa(az) = ras # 0.
Define ¢ € Hom(As, B) by sending as to h(az) for all as € As. The map g
is well-defined since for as,as € A3z with az3 = as, we have ras = ras, that
is fa(ag) = fa(G2). Hence ag — do € Ker(f2) and by e-exactness there exist
ay € Ay and s € R such that fi(a;) = s(az — dg) # 0. Therefore

h(sas) = h(sas — sas) + h(saz) = h(f1(a1)) + h(sas)
= fi(h(a1)) + h(saz2) = h(saz)

G2) by torsion-freeness of B. As as € As,

(9

(a2)) = g o fa(az) = g(f2(az)) = g(ras) = rh(az)

and so f5(g) = rh # 0. Hence Im(f5) <. Ker(f;).
Conversely, we have to show that Im(f;) <. As. To do this, we define
l: A3 — B where B = A3/Im(f2) by l(a3) = az + Im(fs) for all a3 € Az. So

[f3 (D](a2) = 1o fa(az2) = I(f2(a2)) = fa(az) + Im(f2) = Im(f2).

Then f3 (1) = 0 which implies that [ € Ker(f3) = 0. Sol(as) = 0forall ag € A3,
that is ag + Im(f2) = Im(f2). Then Im(f2) N Ras # 0 and Im(f2) <. As.

To prove Im(f1) <. Ker(f3), we take as to be a non-zero element of Ker(f2)
and fo(ag) = 0. We define [ : A5 — B by l(a2) = as + Im(f;) where B =
AQ/Im(fl) For all a; € A1 we have [ o fl(al) = l(fl(al)) = f(al) + Im(fl) =
Im(f1). Thuslofi =0and f;(I) = 0. That means [ € Ker(f;). By hypothesis,
Im(f5) <. Ker(f;), so there exist 0 # r € R and h € Hom(Ag, B) such that
f3(h) = ho fo = rl and rl(az) = ho fa(az) = 0. This implies that rl(ag) =
r(az+Im(f1)) = Im(f1) and so ray € Im(f1). Therefore Im(f1)N Raz #0. O

and h(asz) = h(
f2

The following two examples show that the covariant functor Hom(M, —)
and the contravariant functor Hom(—, M) are not right e-exact and hence not
e-exact.

Example 2.8. Consider the sequence

0— ozt sz 9

Z/22 ——0

where f(z) =2z and g(y) =y + 2Z.

It is clear that the above sequence is e-exact (not exact sequence). Suppose
that B = Z/2Z. We apply Hom(B, ) in the above short e-exact sequence to
get

0 — Hom(Z/2Z,27) ELN Hom(Z/2Z,Z) 2 Hom(Z/2Z,Z/2Z) — 0.

Since Z/2Z is torsion and Z, 2Z are torsion-free, there is no non-zero map
from torsion module to torsion-free module. Therefore Hom(Z/2Z,2Z) = 0,
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Hom(Z/2Z,Z) = 0 and Hom(Z/2Z,7/27) = Z/2Z. Hence Hom(Z/2Z,—) is
not e-exact.
Example 2.9. Consider the e-exact sequence of Z-modules

0 7z 10250/ 0

where f is the identity map and g is the natural morphism. By applying
Hom( , Z), we get

0 —— Hom(Q/Z, Z) ~*— Hom(Q, Z) — Hom(Z, Z) —— 0 .

Since the second term Hom(@Q), Z) is zero and the last term is isomorphic to Z,
the functor Hom( , Z) is not right e-exact.

f1 f2

Theorem 2.10. Let A, As Az 0 be an e-exact sequence.
Then for any torsion-free R-module B, the sequence

15 e-exact.

Proof. To prove 1 ® fo is e-epic, let b ® as € B ® Az. Since ag € Az, there
exist r € Rand ag € Az such that fy(az) = rag and so, r(b® az) = (b®rag) =
b® falaz) = (1 ® f2)(b® as). Therefore 1 ® fy is e-epic. Now, to prove
Im(1® f1) <. Ker(1 ® f2), let b ® as be a non-zero element of Hom(1 ® f).
Then (1 ® f2)(b® az) = b® falaz) = 0. Since B is torsion-free, fa(az) = 0
and ay € Ker(f2). By e-exactness of above sequence, there exist r € R and
ay € Ay such that f1(a1) = ras. Therefore r(b® az) =b® ras = b® fi(a1) =
(1® f1)(b®a1). Hence Im(1 ® f1) <. Ker(1® fa). O

The tensor functor fails to preserve monic as it explained in the following
example.

Example 2.11. The sequence of Z-modules and Z-morphisms

00—zt sz

where f(x) = 2z. It is clear that f is monic and the sequence is e-exact.

However the sequence o 7 (Z/)22) & Z®(Z)27) is not, since f®
1 is not monic.

3. e-projective modules

We say that an R-module P is e-projective if satisfies the following condition:
for any e-epic map f1 : A7 — Ao, and any map fo : P — As, there exist
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0#7r € Rand f3: P— A such that f1f3 =7rfs:
P
fs ’
/ J{fb
X f
A1 E— AQ —0

Theorem 3.1. An R-module P is e-projective if and only if Hom(P, ) is an
e-exact functor.
Proof. (=) Suppose that P is e-projective then by Theorem 2.6 Hom(P, —) is
left e-exact functor. It remains to show that Hom(P, ) is right exact functor.
Suppose A; ELN A — 0 is an e-exact sequence and we have to show the

e-exactness of Hom(P, Ay) ELN Hom(P, A;) — 0. For every non-zero map
fo € Hom(P, As), by definition of e-projective there exist 0 # r € R and
f3: P — Ay such that fi fs = rfy or fi(f3) = rfo Therefore Im(ff)NRfs #0
and we have Im(f;) <. Hom(P, As).

(<) Let f1 : A1 — As be e-epic. Since A; LN As — 0 is an e-exact
sequence and Hom(P, —) is an e-exact functor, then

Hom (P, A1)~ Hom(P, As) — 0

is e-exact. By e-exactness Im(f]) <. Hom(P, As), so for every fo € Hom(P, Az)
there exist f3 € Hom(P, A1) and 0 # r € R such that f{(f5) =rfs or fifs =
rfy. Hence P is e-projective. U

Recall that an exact sequence

f1 f2

0 Ay Ag As 0

of R-modules is split if there exist a morphism g : A3 — Ay and r € R such
that fig =rla,, where 1,4, is the identity map on As.

Proposition 3.2. An e-exact sequence

0 A4, p 0
splits if P is e-projective module.
Proof. Suppose that the sequence 0 Ay n Ay f2 P 0 ise-

exact and P is e-projective, by Theorem 2.6 the sequence

0 —— Hom(P, 4;) L) Hom(P, As) L Hom(P,P) ——0

is e-exact. Since 1p € Hom(P, P) and f5 is e-epic, there exist a map g: P —
Ay and r € R such that fig = r1p. Therefore the sequence is split. O

Proposition 3.3. Every summand of an e-projective R-module is e-projective.
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Proof. Suppose that P; be any e-projective R-module and P> a summand of P;.
We define a projection and an injection maps p: P, — P> and i : P, — P,
with pi = 1p,. Consider the diagram:

Pl#}PQ

| i
fal sz
Y on
A —— Ay ——0

since P; is e-projective, for the composite map fop there exist 0 # r» € R and
a map f3: Py = Ay such that f1f3 = rfop. Now we define f4 : P, — A; by
fa = f3i so we have

fifa = fifzi =rfopi =1fo.

Therefore P, is e-projective. O

Theorem 3.4. Let {P;: j € J} be a family of e-projective modules. Then
;e P is also e-projective.

Proof. Consider the diagram

Aj
Pi—1le; b

| pj
g | lh
Y ooh

Ay Ay 0

where \; and p; are injective and projective maps respectively. Since for all
e-projective module P; we have a map fo); : P; — As, there exist a map
g;j : P; — Aj and 0 # r; € R such that
f195 =1 f2A;.
We define h: [[;.; Pj — A1 as h = gjp;. Therefore
fih = figip; = rjfeXjpj = 1jf2
that is fih = r; fo for all 0 # r; € R. Hence HjGJ P; is e-projective. O

We conclude from Proposition 3.3 and Theorem 3.4 that a direct sum of a
family of R-modules is an e-projective module if and only if each of the direct
summands in the family is e-projective.

Definition. An e-projective resolution of an R-module A is an e-exact sequence

Pois P, o P P, A 0

in which each P, is e-projective.
Definition. An e-injective resolution of an R-module A is an e-exact sequence
0 A EO El .. E™ En+1

in which each E™ is injective.
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Question 1. One can use the above two definitions to redefine the homol-
ogy, using the left e-exact functors Hom (M, —), Hom(—, M) and right e-exact
functor M ® — to define their derived functors and study properties of them.

Question 2. Dually to e-projective modules, one can define e-injective and
e-flat modules and discuss their characterizations and properties.
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