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ESSENTIAL EXACT SEQUENCES

Ismael Akray and Amin Zebari

Abstract. Let R be a commutative ring with identity and M a unital

R-module. We give a new generalization of exact sequences called e-exact

sequences. A sequence 0 → A
f→ B

g→ C → 0 is said to be e-exact if
f is monic, Imf ≤e Kerg and Img ≤e C. We modify many famous

theorems including exact sequences to one includes e-exact sequences like

3 × 3 lemma, four and five lemmas. Next, we prove that for torsion-free
module M , the contravariant functor Hom(−,M) is left e-exact and the

covariant functor M ⊗ − is right e-exact. Finally, we define e-projective

module and characterize it. We show that the direct sum of R-modules
is e-projective module if and only if each summand is e-projective.

1. Introduction

Throughout this article R will denote a commutative ring with identity and
M a unitary R-module. Here we use monic and epic to denote monomorphism
and epimorphism. A submodule N of a module M is called essential (large) in
M if the intersection of N with each nonzero submodule of M is nonzero and we
write N ≤e M . In this case, M is called essential extension of N . Equivalently,
N is essential submodule of M if N ∩Rx 6= 0 for any nonzero element x ∈ M
([1, p. 75]). So in particular, a nonzero ideal I of R is an essential ideal of R
if I ∩K 6= 0 for any nonzero ideal K of R which is equivalent to the condition
I∩Rx 6= 0 for any nonzero element x ∈ R. An element m in an R-module M is
torsion element if there is a nonzero element r in R such that rm = 0. The set of
all torsion elements T (M) is a submodule of M called torsion submodule of M .
A torsion module is a module whose elements are all torsion that is T (M) = M .
A torsion-free module is a module whose elements are not torsion, other than
0, that is T (M) = 0. A sequence of R-modules and R-morphisms

· · · // Mi−1
fi−1

// Mi
fi // Mi+1

// · · ·
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is said to be exact at Mi if Im(fi−1) = Ker(fi). In this paper we generalize this
notion to e-exact sequence using essential (large) submodule, that is, instead
of saying Im(fi−1) is equal to Ker(fi) we say Im(fi−1) is large in Ker(fi). For
more details on the notions used in this paper see [2] and [3].

2. Essential exact sequences

Definition. A sequence of R-modules and R-morphisms

· · · // Mi−1
fi−1

// Mi
fi // Mi+1

// · · ·

is said to be essential exact briefly (e-exact) at Mi if Im(fi−1) ≤e Ker(fi), and
to be e-exact if it is e-exact at each Mi. In particular, a sequence of R-modules
and R-morphisms

0 // A1
f1 // A2

f2 // A3
// 0

is a short e-exact sequence if and only if Ker(f1) = 0, Im(f1) ≤e Ker(f2) and
Im(f2) ≤e A3.

Definition. An R-morphism f : M −→ N is called e-epic if Imf ≤e N . In
addition if Kerf = 0, then f is called essential monic.

The next example shows that the class of all e-exact sequences is larger than
the class of exact sequences.

Example 2.1. Consider the short e-exact sequence

0 // 4Z
f1 // Z

f2 // Z/4Z // 0

where f1 and f2 are defined as f1(4n) = 2n and f2(n) = 2n + 4Z. Since f2 is
not epic, the sequence is not exact.

Lemma 2.2 (Four lemma with e-exact sequence). Consider the commutative
diagram of an R-modules and R-morphisms with e-exact rows

A1
f1 //

t1

��

A2

t2

��

f2 // A3

t3

��

f3 // A4

t4

��

B1
g1 // B2

g2 // B3
g3 // B4

where R is a domain.

(1) If t1, t3 are e-epic, t4 is monic and B2 is torsion-free R-module, then
t2 is e-epic.

(2) If t1 is e-epic and t2, t4 are monic, then Ker(t3) is torsion module. In
addition, if A3 is torsion-free R-module, then t3 is monic.
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Proof. (1) Let b2 be a non-zero element of B2. Then g2(b2) ∈ B3. Since
Im(t3) ≤e B3, Im(t3) ∩ Rg2(b2) 6= 0. So there exist 0 6= r ∈ R and a3 ∈
A3 such that t3(a3) = rg2(b2). Then t4f3(a3) = g3(t3(a3)) = g3(rg2(b2)) =
rg3(g2(b2)) = 0. As t4 is monic, f3(a3) ∈ Ker(t4) = 0. So f3(a3) = 0 and
a3 ∈ Ker(f3). Since Im(f2) ≤e Ker(f3), there exist a2 ∈ A2 and s ∈ R such that
f2(a2) = sa3 6= 0. Then rsg2(b2) = st3(a3) = t3(sa3) = t3(f2(a2)) = g2t2(a2)
and rsb2−t2(a2) ∈ Ker(g2). Since we have Im(g1) ∩R(rsb2−t2(a2)) 6= 0, there
exist b1 ∈ B1 and k ∈ R such that g1(b1) = k(rsb2− t2(a2)). Now, b1 ∈ B1 and
Im(t1) ≤e B1. Then, there exists 0 6= q ∈ R such that t1(a1) = qb1. Therefore

t2f1(a1) = g1t1(a1) = g1(qb1) = qg1(b1) = q(krsb2 − kt2(a2)),

t2f1(a1) = (qkrs)b2 − qkt2(a2),

t2(qka2 + f1(a1)) = (qkrs)b2.

Hence from the last equation and being B2 a torsion-free module, we con-
clude that Im(t2) ∩Rb2 6= 0 and t2 is e-epic.

(2) Suppose a3 ∈ Ker(t3). Then t3(a3) = 0. By commutativity of the
last square of the diagram, t4f3(a3) = g3t3(a3) = 0, so f3(a3) ∈ Ker(t4) and
monicness of t4 gives us a3 ∈ Ker(f3). Since Im(f2) ≤e Ker(f3), there exist
a2 ∈ A2 and r ∈ R such that f2(a2) = ra3 6= 0 and g2t2(a2) = t3f2(a2) =
t3(ra3) = 0, so t2(a2) ∈ Ker(g2). Again, there exist b1 ∈ B1 and s ∈ R such
that g1(b1) = st2(a2) 6= 0. But Im(t1) ≤e B1, so there exist a1 ∈ A1 and k ∈ R
such that t1(a1) = kb1. Then kst2(a2) = kg1(b1) = g1t1(a1) = t2f1(a1) and
t2(ksa2 − f1(a1)) = 0. The monicness of t2 implies ksa2 = f1(a1). Therefore
ksra3 = ksf2(a2) = f2(ks(a2)) = f2f1(a1) = 0 which means ksra3 = 0. Hence
Ker(t3) is torsion module. Being A3 torsion-free module gives that Ker(t3) = 0
and t3 is monic. �

Lemma 2.3 (Five lemma with e-exact sequence). Consider the commutative
diagram of R-modules and R-morphisms with e-exact rows

A1
f1 //

t1

��

A2

t2

��

f2 // A3

t3

��

f3 // A4
f4 //

t4

��

A5

t5

��

B1
g1 // B2

g2 // B3
g3 // B4

g4 // B5

where R is a domain and A3, B3 are torsion-free R-modules.

(1) If t2, t4 are e-epic and t5 is monic, then t3 is e-epic.
(2) If t1 is e-epic and t2, t4 are monic, then t3 is monic.

Proof. (1) Suppose that b3 is a non-zero element of B3. Since g3(b3) ∈ B4

and Im(t4) ≤e B4, Im(t4) ∩ Rg3(b3) 6= 0. So, there exist a4 ∈ A4 and 0 6=
r ∈ R such that t4(a4) = rg3(b3). Also t5f4(a4) = g4t4(a4) = g4(rg3(b3)) =
rg4g3(b3) = 0. Thus f4(a4) ∈ Ker(t5) = 0 and a4 ∈ Ker(f4). By assumption
Im(f3) ≤e Ker(f4) and hence Im(f3) ∩ Ra4 6= 0. So, there exist a3 ∈ A3

and 0 6= s ∈ R such that f3(a3) = sa4 and g3(rsb3 − t3(a3)) = g3(rsb3) −
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g3t3(a3) = rsg3(b3)− t4f3(a3) = st4(a4)− t4(sa4) = 0, that is, rsb3 − t3(a3) ∈
Ker(g3) and by e-exactness of the second row, we have Im(g2) ≤e Ker(g3).
Then Im(g2) ∩ R(rsb3 − t3(a3)) 6= 0 and so g2(b2) = q(rsb3 − t3(a3)) 6= 0
for some b2 ∈ B2 and 0 6= q ∈ R. Also Im(t2) ≤e B2 and so we can find
a2 ∈ A2 and 0 6= k ∈ R such that t2(a2) = kb2. Thus t3(f2(a2) + qka3) =
t3f2(a2) + t3(qka3) = g2t2(a2) + qkt3(a3) = g2(kb2) + qkt3(a3) = kg2(b2) +
kt3(a3) = kq(rsb3−t3(a3))+qkt3(a3) = qkrsb3−kqt3(a3)+kqt3(a3) = (qkrs)b3.
Therefore Im(t3) ∩Rb3 6= 0 and t3 is e-epic.

(2) Let a3 ∈ Ker(t3). Then t3(a3) = 0 and by commutativity of the third
square, t4f3(a3) = g3t3(a3) = 0. Thus f3(a3) ∈ Ker(t4) = 0 and a3 ∈ Ker(f3).
Since Im(f2) ≤e Ker(f3), there exist a2 ∈ A2 and 0 6= r ∈ R such that
f2(a2) = ra3 and g2t2(a2) = t3f2(a2) = t3(ra3) = rt3(a3) = 0. Which means
that t2(a2) ∈ Ker(g2). By e-exactness we have Im(g1) ∩ Rt2(a2) 6= 0, so there
exist b1 ∈ B1 and 0 6= s ∈ R such that g1(b1) = st2(a2). Again Im(t1) ≤e B1,
so there exist a1 ∈ A1 and 0 6= k ∈ R such that t1(a1) = kb1. From monicness
of t2 and the fact that kst2(a2) = kg1(b1) = g1t1(a1) = t2f1(a1) we obtain
that ksa2 = f1(a1) and so ksra3 = ksf2(a2) = f2f1(a1) = 0. Now torsion-
freeness of B3 implies that ksra3 = 0 and Ker(t3) is torsion module. The
torsion-freeness of A3 gives the monicness of t3. �

We conclude from Lemma 2.3 that if t1, t2, t4 and t5 are essential monic,
then so is t3. The following is our version of 3×3 lemma using e-exact sequences
instead of exact sequences.

Lemma 2.4 (3× 3 lemma with e-exact sequence). Consider the commutative
diagram of R-modules and R-morphisms where R is a domain and A2, A3 are
torsion-free R-modules:

0

��

0

��

0

��

0 // A1

i1

��

f1 // A2

j1

��

f2 // A3
//

p1

��

0

0 // B1
g1 //

i2

��

B2
g2 //

j2

��

B3
//

p2

��

0

0 // C1
h1 //

��

C2
h2 //

��

C3
//

��

0

0 0 0

If the columns and the two bottom rows are e-exact, then the top row is also
e-exact.
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Proof. To prove that the top row is e-exact, we have to check the following
three conditions:

(1) Ker(f1) = 0.
Take a1 ∈ Ker(f1). Then g1i1(a1) = j1f1(a1) = 0 and i1(a1) ∈ Ker(g1).

Since Ker(g1) = 0, i1(a1) = 0 and a1 ∈ Ker(i1) = 0. Therefore a1 = 0.
(2) Im(f1) ≤e Ker(f2).
First to prove Im(f1) ⊆ Ker(f2). Let a2 ∈ Im(f1). Then, there exists

a1 ∈ A1 such that f1(a1) = a2 and g1i1(a1) = j1f1(a1) = j1(a2), which means
that j1(a2) ∈ Im(g1) ⊆ Ker(g2) and so p1f2(a2) = g2j1(a2) = 0. Hence
f2(a2) ∈ Ker(p1) = 0 and so a2 ∈ Ker(f2). Now for essentiality, take a2 to be
a non-zero element of Ker(f2). Then f2(a2) = 0 and g2j1(a2) = p1f2(a2) = 0.
So j1(a2) ∈ Ker(g2) and as Im(g1) ≤e Ker(g2), Im(g1) ∩ Rj1(a2) 6= 0. Hence,
there exist 0 6= s ∈ R and b1 ∈ B1 such that g1(b1) = sj1(a2). Also h1i2(b1) =
j2g1(b1) = sj2j1(a2) = 0. Thus i2(b1) ∈ Ker(h1) = 0. By e-exactness of the
first column we get Im(i1) ∩ Rb1 6= 0. Then, there exist a1 ∈ A1 and k ∈ R
such that i1(a1) = kb1 6= 0 and so ksj1(a2) = g1(kb1) = g1i1(a1) = j1f1(a1).
Thus j1(ksa2 − f1(a1)) = 0 and as Ker(j1) = 0, ksa2 = f1(a1). Therefore we
have Im(f1) ≤e Ker(f2).

(3) Im(f2) ≤e A3.
Let a3 be a non-zero element of A3 and p1(a3) ∈ B3. There exist b2 ∈ B2

and r ∈ R such that g2(b2) = rp1(a3) 6= 0. By commutativity of the diagram

h2j2(b2) = p2g2(b2) = rp2p1(a3) = 0.

That means j2(b2) ∈ Ker(h2) and by e-exactness of the bottom row, there exist
c1 ∈ C1 and s ∈ R such that h1(c1) = sj2(b2). Again by e-exactness of the
first column there exist m ∈ R and b1 ∈ B1 such that i2(b1) = mc1. Then
msj2(b2) = mh1(c1) = h1(mc1) = h1i2(b1) = j2g1(b1). Therefore j2(g1(b1) −
smb2) = 0, so g1(b1) − smb2 ∈ Ker(j2). Since Im(j1) ≤e Ker(j2), there exist
a2 ∈ A2 and n ∈ R such that j1(a2) = n(g1(b1)− smb2) 6= 0. It is clear that

p1f2(a2) = g2j1(a2) = ng2(g1(b1)− smb2) = −nsmg2(b2).

So p1f2(a2) = −nsmrp1(a3) which is equivalent to p1(f(a2) + nmra3) = 0.
But p1 is monic, so f2(a2) = −nsmra3. Hence Im(f2) ≤e A3. �

A functor F is called covariant left e-exact if for every short e-exact sequence

0 // A
f1 // B

f2 // C // 0 ,

the sequence

0 // F (A)
F (f1)

// F (B)
F (f2)

// F (C)

is e-exact and called covariant right e-exact if the sequence

F (A)
F (f1)

// F (B)
F (f2)

// F (C) // 0
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is e-exact whenever 0 // A
f1 // B

f2 // C // 0 is e-exact. A functor
F is called covariant e-exact functor if it is both covariant left e-exact functor
and covariant right e-exact functor. Now, suppose S is a multiplicatively closed
subset of a ring R. In what follows, we show that the localization functor is
e-exact functor.

Proposition 2.5. If a sequence of R-modules and R-morphisms

0 // A1
f1 // A2

f2 // A3
// 0

is e-exact, then so is the sequence

0 // S−1A1
S−1f1 // S−1A2

S−1f2 // S−1A3
// 0 .

Proof. First of all we show that Im(S−1f1) ≤e Ker(S−1f2). Let a2/s be a
non-zero element of Ker(S−1f2). Then S−1f2(a2/s) = f2(a2)/s = 0 and so
there exists t ∈ S such that tf2(a2) = f2(ta2) = 0. Thus ta2 ∈ Ker(f2). Since
Im(f1) ≤e Ker(f2), there exist r ∈ R and a1 ∈ A1 such that f1(a1) = rta2 6=
0. Then f1(a1)/s = (rt/1)(a2/s), which means S−1f1(a1/s) = (rt/1)(a2/s).
Therefore Im(S−1f1) ∩ S−1R(a2/s) 6= 0.

Now to prove Ker(S−1f1) = 0 take a1/s ∈ Ker(S−1f1). Then S−1f1(a1/s)
= f1(a1)/s = 0. Then there exists t ∈ S such that tf1(a1) = f1(ta1) = 0. By
hypotheses Ker(f1) = 0, so ta1 = 0 and a1/s = 0.

Finally, we want to show that Im(S−1f2) ≤e S−1A3. Suppose that a3/s is
a non-zero element of S−1A3 where a3 ∈ A3 and since Im(f2) ≤e A3, there
exist a2 ∈ A2 and r ∈ R such that f2(a2) = ra3 6= 0. Also f2(a2)/s =
(r/1)(a3/s) which implies that S−1f2(a2/s) = (r/1)(a3/s). Hence Im(S−1f2)∩
S−1R(a3/s) 6= 0 and the sequence

0 // S−1A1
f1 // S−1A2

f2 // S−1A3
// 0

is e-exact. �

A functor G is called contravariant left e-exact if for every short e-exact
sequence

0 // A
f1 // B

f2 // C // 0 ,

the sequence

0 // G(C)
G(f2)

// G(B)
G(f1)

// G(A)

is e-exact. In the following two results, we discuss the left e-exactness of the
covariant functor Hom(M,−) and the contravariant functor Hom(−,M).

Theorem 2.6. The sequence of R-modules and R-morphisms

0 // A1
f1 // A2

f2 // A3
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is e-exact if and only if for all R-module B, the sequence

0 // Hom(B,A1)
f1

∗
// Hom(B,A2)

f2
∗
// Hom(B,A3)

is e-exact.

Proof. (⇒) First to show that Ker(f∗1 ) = 0 take h ∈ Ker(f∗1 ). Then f∗1 (h) =
f1 ◦ h = 0 so f1(h(a1)) = 0 for all a1 ∈ A1. Thus h(a1) ∈ Ker(f1) = 0. Hence
h(a1) = 0 for all a1 ∈ A1 and so h = 0. Also to prove Im(f∗1 ) ≤e Ker(f∗2 ). We
take a non-zero element g ∈ Ker(f∗2 ) and show that Im(f∗1 ) ∩ Rg 6= 0. Since
g ∈ Ker(f∗2 ), f∗2 (g) = 0 = f2 ◦ g. Then Im(g) ⊆ Ker(f2), and by e-exactness,
Im(f1) ≤e Ker(f2), Since g : B → A2, for all b ∈ B, g(b) ∈ Ker(f2) and
Im(f1) ∩ Rg(b) 6= 0. Then, there exist a1 ∈ A1 and r ∈ R such that f1(a1) =
rg(b) 6= 0 and so g(rb) ∈ Im(f1). We define l : B → A1 by l(b) = a1. Now to
show that l is well-defined. Let b1 = b2 so g(b1) = g(b2) and rg(b1) = rg(b2).
Hence f1(a1) = f1(a2) which implies that a1−a2 ∈ Ker(f1) = 0. Thus a1 = a2
and l(b1) = l(b2). Now, we have (f1 ◦ l)(b) = f1(l(b)) = f1(a1) = rg(b), which
gives f1 ◦ l = rg. Therefore f∗1 (l) = rg 6= 0 and Im(f∗1 ) ∩Rg 6= 0.

(⇐) Let a2 be a non-zero element of Ker(f2). We set B = Ker(f2) and define
i : B → A2 to be the identity map. So [f∗2 (i)](a2) = f2(i(a2)) = f2(a2) = 0,
for all a2 ∈ Ker(f2). Then f∗2 (i) = 0 and 0 6= i∗ ∈ Ker(f∗2 ). Since Im(f∗1 ) ≤e
Ker(f∗2 ), there exist l ∈ Hom(B,A1) and r ∈ R such that f∗1 (l) = ri that is
f1 ◦ l = ri 6= 0. Therefore

0 6= ra2 = ri(a2) = f1 ◦ l(a2) = f1(l(a2))

and Im(f1) ∩ Ra2 6= 0. Now to prove Ker(f1) = 0, we take B = Ker(f1) and
define i : B → A1 to be the identity map. Then for all a1 ∈ Ker(f1), [f∗1 i](a1) =
f1 ◦ i(a1) = f1(i(a1)) = f1(a1) = 0. So f∗1 (i(a1)) = 0 and i(a1) ∈ Ker(f∗1 ) = 0.
Thus a1 = 0 and hence Ker(f1) = 0. �

Theorem 2.7. If a sequence of R-modules and R-morphisms

A1
f1 // A2

f2 // A3
// 0

is e-exact, then for all torsion-free R-module B, the sequence

0 // Hom(A3, B)
f2

∗
// Hom(A2, B)

f1
∗
// Hom(A1, B)

is e-exact. The converse is true if A3/Im(f2) and A2/Im(f1) are torsion-free
R-modules.

Proof. We have to prove that f2
∗ is monic and Im(f∗2 ) ≤e Ker(f∗1 ). For this

purpose, take g, h ∈ Hom(A3, B) and f∗2 (h) = f∗2 (g). Then h ◦ f2 = g ◦ f2.
Since Im(f2) ≤e A3, for all non-zero element a3 ∈ A3 there exist a2 ∈ A2 and
r ∈ R such that f2(a2) = ra3 6= 0. So

h(ra3) = h(f2(a2)) = h ◦ f2(a2) = g ◦ f2(a2) = g(f2(a2)) = g(ra3)
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and rh(a3) = rg(a3) that is r(h(a3) − g(a3)) = 0. Since B is torsion-free
module, h = g. Therefore f∗2 is monic. Now let h be a non-zero element of
Ker(f∗1 ). Then f∗1 (h) = 0 and h ◦ f1 = 0. Since Im(f2) ≤e A3, for all non-
zero a3 ∈ A3, there exist a2 ∈ A2 and r ∈ R such that f2(a2) = ra3 6= 0.
Define g ∈ Hom(A3, B) by sending a3 to h(a2) for all a3 ∈ A3. The map g
is well-defined since for a3, â3 ∈ A3 with a3 = â3, we have ra3 = râ3, that
is f2(a2) = f2(â2). Hence a2 − â2 ∈ Ker(f2) and by e-exactness there exist
a1 ∈ A1 and s ∈ R such that f1(a1) = s(a2 − â2) 6= 0. Therefore

h(sa2) = h(sa2 − sâ2) + h(sâ2) = h(f1(a1)) + h(sâ2)

= f∗1 (h(a1)) + h(sâ2) = h(sâ2)

and h(a2) = h(â2) by torsion-freeness of B. As a2 ∈ A2,

f∗2 (g(a2)) = g ◦ f2(a2) = g(f2(a2)) = g(ra3) = rh(a2)

and so f∗2 (g) = rh 6= 0. Hence Im(f∗2 ) ≤e Ker(f∗1 ).
Conversely, we have to show that Im(f2) ≤e A3. To do this, we define

l : A3 → B where B = A3/Im(f2) by l(a3) = a3 + Im(f2) for all a3 ∈ A3. So

[f∗2 (l)](a2) = l ◦ f2(a2) = l(f2(a2)) = f2(a2) + Im(f2) = Im(f2).

Then f∗2 (l) = 0 which implies that l ∈ Ker(f∗2 ) = 0. So l(a3) = 0 for all a3 ∈ A3,
that is a3 + Im(f2) = Im(f2). Then Im(f2) ∩Ra3 6= 0 and Im(f2) ≤e A3.

To prove Im(f1) ≤e Ker(f2), we take a2 to be a non-zero element of Ker(f2)
and f2(a2) = 0. We define l : A2 −→ B by l(a2) = a2 + Im(f1) where B =
A2/Im(f1). For all a1 ∈ A1 we have l ◦ f1(a1) = l(f1(a1)) = f(a1) + Im(f1) =
Im(f1). Thus l◦f1 = 0 and f∗1 (l) = 0. That means l ∈ Ker(f∗1 ). By hypothesis,
Im(f∗2 ) ≤e Ker(f∗1 ), so there exist 0 6= r ∈ R and h ∈ Hom(A3, B) such that
f∗2 (h) = h ◦ f2 = rl and rl(a2) = h ◦ f2(a2) = 0. This implies that rl(a2) =
r(a2 +Im(f1)) = Im(f1) and so ra2 ∈ Im(f1). Therefore Im(f1)∩ Ra2 6= 0. �

The following two examples show that the covariant functor Hom(M,−)
and the contravariant functor Hom(−,M) are not right e-exact and hence not
e-exact.

Example 2.8. Consider the sequence

0 // 2Z
f
// Z

g
// Z/2Z // 0

where f(x) = 2x and g(y) = y + 2Z.
It is clear that the above sequence is e-exact (not exact sequence). Suppose

that B = Z/2Z. We apply Hom(B, ) in the above short e-exact sequence to
get

0 −→ Hom(Z/2Z, 2Z)
f∗−→ Hom(Z/2Z,Z)

g∗−→ Hom(Z/2Z,Z/2Z) −→ 0.

Since Z/2Z is torsion and Z, 2Z are torsion-free, there is no non-zero map
from torsion module to torsion-free module. Therefore Hom(Z/2Z, 2Z) = 0,
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Hom(Z/2Z,Z) = 0 and Hom(Z/2Z,Z/2Z) = Z/2Z. Hence Hom(Z/2Z,−) is
not e-exact.

Example 2.9. Consider the e-exact sequence of Z-modules

0 // Z
f
// Q

g
// Q/Z // 0

where f is the identity map and g is the natural morphism. By applying
Hom( , Z), we get

0 // Hom(Q/Z,Z)
g∗
// Hom(Q,Z) // Hom(Z,Z) // 0 .

Since the second term Hom(Q,Z) is zero and the last term is isomorphic to Z,
the functor Hom( , Z) is not right e-exact.

Theorem 2.10. Let A1
f1 // A2

f2 // A3
// 0 be an e-exact sequence.

Then for any torsion-free R-module B, the sequence

B ⊗A1
1⊗f1 // B ⊗A2

1⊗f2 // B ⊗A3
// 0

is e-exact.

Proof. To prove 1 ⊗ f2 is e-epic, let b ⊗ a2 ∈ B ⊗ A3. Since a3 ∈ A3, there
exist r ∈ Rand a2 ∈ A2 such that f2(a2) = ra3 and so, r(b⊗ a3) = (b⊗ ra3) =
b ⊗ f2(a2) = (1 ⊗ f2)(b ⊗ a2). Therefore 1 ⊗ f2 is e-epic. Now, to prove
Im(1 ⊗ f1) ≤e Ker(1 ⊗ f2), let b ⊗ a2 be a non-zero element of Hom(1 ⊗ f2).
Then (1 ⊗ f2)(b ⊗ a2) = b ⊗ f2(a2) = 0. Since B is torsion-free, f2(a2) = 0
and a2 ∈ Ker(f2). By e-exactness of above sequence, there exist r ∈ R and
a1 ∈ A1 such that f1(a1) = ra2. Therefore r(b⊗ a2) = b⊗ ra2 = b⊗ f1(a1) =
(1⊗ f1)(b⊗ a1). Hence Im(1⊗ f1) ≤e Ker(1⊗ f2). �

The tensor functor fails to preserve monic as it explained in the following
example.

Example 2.11. The sequence of Z-modules and Z-morphisms

0 // Z
f
// Z

where f(x) = 2x. It is clear that f is monic and the sequence is e-exact.

However the sequence 0 // Z ⊗ (Z/2Z)
f⊗1
// Z ⊗ (Z/2Z) is not, since f⊗

1 is not monic.

3. e-projective modules

We say that an R-module P is e-projective if satisfies the following condition:
for any e-epic map f1 : A1 → A2, and any map f2 : P → A2, there exist
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0 6= r ∈ R and f3 : P → A1 such that f1f3 = rf2:

P

f2
��

f3

}}

A1
f1 // A2

// 0

Theorem 3.1. An R-module P is e-projective if and only if Hom(P, ) is an
e-exact functor.

Proof. (⇒) Suppose that P is e-projective then by Theorem 2.6 Hom(P,−) is
left e-exact functor. It remains to show that Hom(P, ) is right exact functor.

Suppose A1
f1−→ A2 −→ 0 is an e-exact sequence and we have to show the

e-exactness of Hom(P,A1)
f1

∗

−→ Hom(P,A2) −→ 0. For every non-zero map
f2 ∈ Hom(P,A2), by definition of e-projective there exist 0 6= r ∈ R and
f3 : P → A1 such that f1f3 = rf2 or f∗1 (f3) = rf2 Therefore Im(f∗1 )∩Rf2 6= 0
and we have Im(f∗1 ) ≤e Hom(P,A2).

(⇐) Let f1 : A1 → A2 be e-epic. Since A1
f1−→ A2 −→ 0 is an e-exact

sequence and Hom(P,−) is an e-exact functor, then

Hom(P,A1)
f1

∗
// Hom(P,A2) // 0

is e-exact. By e-exactness Im(f∗1 ) ≤e Hom(P,A2), so for every f2 ∈ Hom(P,A2)
there exist f3 ∈ Hom(P,A1) and 0 6= r ∈ R such that f∗1 (f3) = rf2 or f1f3 =
rf2. Hence P is e-projective. �

Recall that an exact sequence

0 // A1
f1 // A2

f2 // A3
// 0

of R-modules is split if there exist a morphism g : A3 → A2 and r ∈ R such
that f1g = r1A3

, where 1A3
is the identity map on A3.

Proposition 3.2. An e-exact sequence

0 // A1
f1 // A2

f2 // P // 0

splits if P is e-projective module.

Proof. Suppose that the sequence 0 // A1
f1 // A2

f2 // P // 0 is e-
exact and P is e-projective, by Theorem 2.6 the sequence

0 // Hom(P,A1)
f∗
1 // Hom(P,A2)

f∗
2 // Hom(P, P ) // 0

is e-exact. Since 1P ∈ Hom(P, P ) and f∗2 is e-epic, there exist a map g : P −→
A2 and r ∈ R such that f1g = r1P . Therefore the sequence is split. �

Proposition 3.3. Every summand of an e-projective R-module is e-projective.
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Proof. Suppose that P1 be any e-projective R-module and P2 a summand of P1.
We define a projection and an injection maps p : P1 −→ P2 and i : P2 −→ P1,
with pi = 1P2 . Consider the diagram:

P1
p
//

f3

��

P2
i

oo

f2

��

A1
f1 // A2

// 0

since P1 is e-projective, for the composite map f2p there exist 0 6= r ∈ R and
a map f3 : P1 → A1 such that f1f3 = rf2p. Now we define f4 : P2 −→ A1 by
f4 = f3i so we have

f1f4 = f1f3i = rf2pi = rf2.

Therefore P2 is e-projective. �

Theorem 3.4. Let {Pj: j ∈ J} be a family of e-projective modules. Then∐
j∈J Pj is also e-projective.

Proof. Consider the diagram

Pj
λj
//

gj

��

∐
j∈J Pj

pj
oo

f2

��

A1
f1 // A2

// 0

where λj and pj are injective and projective maps respectively. Since for all
e-projective module Pj we have a map f2λj : Pj −→ A2, there exist a map
gj : Pj −→ A1 and 0 6= rj ∈ R such that

f1gj = rjf2λj .

We define h :
∐
j∈J Pj −→ A1 as h = gjpj . Therefore

f1h = f1gjpj = rjf2λjpj = rjf2

that is f1h = rjf2 for all 0 6= rj ∈ R. Hence
∐
j∈J Pj is e-projective. �

We conclude from Proposition 3.3 and Theorem 3.4 that a direct sum of a
family of R-modules is an e-projective module if and only if each of the direct
summands in the family is e-projective.

Definition. An e-projective resolution of an R-module A is an e-exact sequence

· · · // Pn+1
// Pn // · · · // P1

// P0
// A // 0

in which each Pn is e-projective.

Definition. An e-injective resolution of an R-module A is an e-exact sequence

0 // A // E0 // E1 // · · · // En // En+1 // · · ·
in which each En is injective.
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Question 1. One can use the above two definitions to redefine the homol-
ogy, using the left e-exact functors Hom(M,−), Hom(−,M) and right e-exact
functor M ⊗− to define their derived functors and study properties of them.

Question 2. Dually to e-projective modules, one can define e-injective and
e-flat modules and discuss their characterizations and properties.
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