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UNIT GROUPS OF QUOTIENTS OF NUMBER FIELDS

JERSON CARO-REYES AND GUILLERMO MANTILLA-SOLER

ABSTRACT. Let K be a number field. Here we give an explicit description
of the group (O /I)* for most ideals I. In particular, we give a complete
characterization of such group for those ideals I that are coprime to the
different ideal Dy .

1. Introduction

Let K be a number field and let I << Ok be a non zero ideal. In this paper
we are interested in having an explicit description, as in the case K = Q, of
the finite abelian group (O /I)*. The structure of such groups is probably
known since the time of Hasse but an explicit description as the one we give
here seems to be missing from the literature. There are some examples in which
such calculations have been carried out, mostly for quadratic and certain cubic
fields (see [1], [4]). For instance in [1, Theorems 3.1, 4.1, 4.2, 5.4, 7.1, 7.2] the
authors calculate such explicit description for monogenic cubic fields of square
free discriminant; it is in fact such paper what motivated us to write this
article. The strategy in [1] is to divide the problem in several cases, in terms
of possible ramification, and then use the monogenicity and the hypothesis on
the discriminant. For each possible ramification the authors obtain the six
theorems mentioned above. Here we do not assume any hypothesis on the
degree, discriminant or the structure of the ring of integers. Moreover, we
write a cohesive result that includes all the cases, except when p = 3 ramifies,
described in [1]. Our main result is the following:

Theorem (Cf. Theorem 2.6). Let K be a number field. Let P be a prime ideal
i Ok lying over a prime p and let e, f be respectively the ramification and
residue degrees of P over p. Let n be a positive integer and let q,r be the unique
non negative integers with 0 < r < e—1 such that n —1 = eq+r. Suppose that
eitherp >e+1, p=2 or that n < 2. Then,

(O /B")° = (Z/p" ' Z) T < (Z/pUZ) e ) Z)(pf = V)Z if p is odd,
K Syl ((Z/2"Z)) x (22" 2) " x Z)(2F —1)Z ifp=2 and e =1.
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In particular, if e =1
(Ox /B™)" = SyL((Z/p"Z)*) x (Z/p" ' 2)! = x Z/(p" = 1)Z.
Here by Syl,,((Z/p"Z)*) we mean the group

Z)p" 7 if p is odd ormn =1,

Syl ((Z/p™Z)*) :=
i (Z/p"Z)7) {Z/QZXZ/Q("_Q)Z otherwise.

In the case of quadratic or cubic fields the above theorem does not cover
ramified primes lying over 2 and 3. Such cases can be done “by hand” given
that there are explicit parametrizations of the ring of integers in such fields;
even though the authors in [1] do it only for monogenic fields the same proof
of their result for p = 3 can be carried out using the of Delone-Faddeev-Gan-
Gross-Savin parametrization (see for instance [2, §5]). The remaining missing
cases of the above theorem seem hard to describe in a cohesive way. For
instance, in the case of cubic fields in which 3 ramifies the structure of the
group depends not only on the residue and ramification degrees but also on the
residue class of the discriminant modulo 9. At the moment the best we can
get, for an explicit description, is for those ideals that contain no ramification.
Explicitly:

Theorem (Cf. Theorem 2.7). Let K be a number field and let I be a non zero
ideal of O . Let I =BT -...-PIm be the prime factorization of I. Let p; be
the rational prime lying under B; and let f; be the residue degree of B; over
pi- If I is coprime to the different ideal Dy, then

O/ = T (S¥1,.(@/52)") < @/p2 25 x 2/ ] ~1)Z).

i=1

2. Proofs of results

The calculation of the structure of units in quotients of global fields is done
by going over a completion and doing the equivalent calculations over local
fields. Here we give proofs of the necessary tools over p-adic fields to obtain
our results. As we have mentioned before all of this is elementary however it
is missing from the literature (see [1] and its references).

Proposition 2.1. Let p be a prime and let K be a finite field extension of

Qp. Let B be the mazximal ideal of Ok, and for any positive integer m let

UM =14 B™ be the group of m-units. Then, for every positive integer n
(Ox/B")" =UD /U™ x (O /B)".

Proof. Let (Ox/B™)" — (Ox/B)" be the projection map. Since the following

sequence is exact

1— UV /U™ — (Ox/B")* — (Ox/B)" — 1,
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the result follows from the fact that U™ /U™ is a p-group and that (Ox/B)”
has order coprime to p. O

Theorem 2.2. Let K be a number field. Let B be a prime ideal in Ok lying
over a prime p and let e be the ramification degree of B over p. Let n be a
positive integer. Suppose that either p > e+ 1 or that n < 2. Then, there is an
isomorphism of abelian groups

(O /B™")" = Ok /B! x (Ok /B)".

Proof. Let K be the B-completion of K and let B = BOx. Since for every non-
negative integer m there is a ring isomorphism Oy /B™ = Ok /P™ it follows
from Proposition 2.1 that

(Ox /B = U /U % (Ok /P)"
Hence, the result follows from the facts (see [3, Ch II, Prop 3.10, Prop 5.5))
UM /U 2 Ok /B and that for p > e + 1 the p-adic logarithm map induces a

group isomorphism
UL U™ >~ O /B 1 O

Proposition 2.3. Let K be a number field and let P be a prime ideal in Ok
lying over a prime p and let e and f be the usual. Let m be a non negative
integer, let 0 < r < e —1 be the residue class of m modulo e and let ¢ = ="
Then, there is an isomorphism of abelian groups

Ok /B™ = (Z/p"™'2)"T x (Z/p"Z)\*~ "7

Proof. To simplify things we divide the proof in two cases depending on whether
or not e > m.

(1) Let us suppose first that e > m. In this case p € P hence O /P™ is
a Z/pZ-module of size p™f in particular O /B™ = (Z/pZ)™f .

(2) Now, let us assume that e < m. By the classification theorem of finite
abelian groups there are positive integers a1 < as < --- < aq such that

O /P 2Z/p" L X L/p**7L X - X L]p**Z.

The exponent of the group Og /P is p® and it can be calculated as follows: aq
is the smallest positive integer such that p®Og C B". Since locally p*O =
P we have that aq = [*]. Let Vig be the discrete valuation of K induced by
B, where Vig(p) = e. An element o € Ok is p-torsion in the quotient Ox /P™
if and only if Vig(pa) > m, i.e., v is p-torsion if and only if Vig(a) > m —e. In
other words (O /PB™)[p] = P ¢/P™ = Ok /P° = (Z/pZ)*/. Where the last
isomorphism is obtained thanks to case 1 of the proof. Hence,

d = dimg, ((Ox /B")[p)) = ef.

Since ag = [2] < g+1 the group Ok /B™ is a Z/p?*! Z-module. In particular,
as an abelian group, O /PB™ is isomorphic to a direct product of groups of
the form Z/p'Z for t at most ¢ + 1. Let A and pu respectively be the num-
ber of Z/p?*17Z copies (resp. Z/piZ copies) appearing in the decomposition of
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Ok /P™. Since Ok /P™ is a Z/p?1Z-module, p?Ox /PB™ is a Z/pZ-module,
and moreover A = dimg, (p?Ox /P™). Since Vip(p?) = eq and m = eq +r,
we see that p!Ox /P™ = Ok /P" = (Z/pZ)"f. Thus, A = rf. Since in this
case, i.e., e < m, q is positive we have that #(p? 1Og /PB™) = p* T+, On
the other hand p?='Ox /P = O /PBT", hence comparing sizes we get that
fle+r)=2 4+ p=2rf+ p thus p = (e — r) f. Finally since

#(Og /P™) = pmf — pequrTf — p(q+1)rf+q(efr)f — p(q+1)>\+qu

we see that there can not be other factors, besides Z/p9Z and Z/p?™1Z, in the
decomposition of O /PB™. In particular there is an isomorphism of abelian
groups
Ok /F™ = (Z/p™'2)"T = (2/p'2)' .
Notice that if e > m, then ¢ = 0 and » = m. Moreover, if e = m, then ¢ = 1
and r = 0. Either way the formula obtained in case 2 also applies to case 1. [J

Lemma 2.4. Let p be a prime and let f be a positive integer. Suppose that
H is a Z,-submodule of Z;f such that Z]J;/H =~ (Z/pZ)f=*. Then, there is an

automorphism ¢ of sz such that ¢(H) = Z, x (pZ,)! L. In particular, for all
non-negative integer m

frpmpg o~ m m+1r\f—1
2P H = Z/p" L x (Z/p™ T Z)T

Proof. Since Zg /H is p-torsion we have that pZ;; C H. Moreover, by comparing
sizes, H/pZIJ)C >~ 7/pZ. Let t € H be an element in the preimage of 1. In
particular, H is the Z,-module generated by ¢ and pZ£ . Let ay € Z,, for
i =1,..., f, be the coordinates of ¢ in {eq,...,es}, the canonical Z, basis of
Zj. Since t is not in pZJ there must exist some of a; € Zy \ pZ,. Without
loss of generality we assume that ay ¢ pZ,. It follows that B := {t,eq2,...,es}
is also a Z,-basis of ZIJ: hence the map induced by ¢(t) = e; and ¢(e;) = e,
fori =2,...,f, is a Zp-automorphism of Z]J;. By construction ¢(H) = Z, x
(pr)f_l- O

Lemma 2.5. Let K be a number field. Let B be a prime ideal in Ok lying
over 2. Let e and f be as usual. Suppose that e = 1. Then, for every positive
integer n

(Ok/B")" = (2/2"L)" x (Z/2"Z)T 1 x (O /P)"
where (Z/2"Z)* = 7./]27 x /2" =27 if n > 2 and trivial otherwise.

Proof. We may assume that n > 2. Arguing similarly to the proof of Theorem
2.2 it is enough to show that

UM U™ = (72" )" x (/2" 1) L
Let m be an integer such that 2 < m < n. Let K be the B-completion of K
and let B = POx. As in the proof of Theorem 2.2, using the 2-adic logarithm
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(see [3, Ch II, Prop 5.5))
U™ = pm 7t and UM U™ = O fpr—m = (227" Z)

The last isomorphism is obtained thanks to Proposition 2.3. In particular,

2
U™ (U<m>) ~ 75 /225 = (2/2Z)" and U™ jUm+D) = (7,/27)7 .

2
Since (U(m))2 C U™+ it follows from the above that (U(m)) =yt In
9(n—2)
particular, U = (U (2)) . Since K/Qy is unramified the torsion subgroup
of UM is +1 hence UM = Z7]27, % Z{ (see [3, Ch. TII, proof of Prop 5.7]).
Since U®) is torsion free, using the projection map onto the second component
UW = 7/27 x 7}, we get U =~ H 9725, Thus,

n—2)

o
vOu =y (U@) =292 x (24) /2 H.

By [3, Ch. II, Prop 3.10] and Proposition 2.3, U(l)/U(Q) >~ Ok /P = (Z/QZ)f.
In particular, Z3 /H = (Z/27)7 1. 1t follows from Lemma 2.4 that

75 )27 2 H =~ 72" 27 x (Z/2" ') .

Therefore
UM U™ = 7,/27 x 2.)2" 27 x (/2" 7). 0

Theorem 2.6. Let K be a number field. Let B be a prime ideal in Ok lying
over a prime p and let e, f be respectively the ramification and residue degrees
of P over p. Let n be a positive integer and let q,r be the unique non negative
integers such that n — 1 = eq+ 71 and 0 < r < e — 1. Suppose that either

p>e+1,p=2 orthat n < 2. Then,
O jpny = L @D < @) X L/ — DT if p s odd,
(O | (@/2rz) x (z)2"'z) " x z) (20 —1)Z ifp=2ande=1.

In particular, ife=1,
(O /F")" = Syl ((Z/p"2)") x (Z/p" ' Z)T = x Z/(p” ~ 1)
Proof. Let us suppose first that p is odd. Thanks to Theorem 2.2 we have that

(O /B")" = Ok /B! x (Ok /B)".

Since B is maximal, the group (Ox /)" is cyclic and has order pf — 1. The
structure of the group Ox /P! is given by Proposition 2.3. For the last
part notice that if e = 1, then » = 0 and ¢ = n — 1 hence, in such case,
(O /B™)" = (Z/p"*Z)! x Z/(pf —1)Z from which the last part follows. The
case p = 2 is done in Lemma 2.5. O

As an immediate consequence of the above we deduce:
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Theorem 2.7. Let K be number field and let I be a non zero ideal of O . Let
I =971 .- Pm be the prime factorization of I. Let p; be the rational prime
lying under *P; and let f; be the residue degree of B; over p;. If I is coprime
to the different ideal Dy, then

(Oxc/D)* = [T (851, (Z/52)") x (/07 = 2)) " < 2/ (b = 1)Z).

i=1
Proof. This follows from the Chinese reminder theorem and the last part of
Theorem 2.6. O
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