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ON COMPLEX REPRESENTATIONS OF
THE CLIFFORD ALGEBRAS

YOUNGKWON SONG

ABSTRACT. In this paper, we establish a complex matrix representation
of the Clifford algebra C¢p ,. The size of our representation is signifi-
cantly smaller than the size of the elements in L, ¢(R). Additionally, we
give detailed information about the spectrum of the constructed matrix
representation.

1. Introduction

Throughout this paper, C¥, , is the Clifford algebra on RP*¢ which is the n-

dimensional pseudo Euclidean space with the quadratic form Q(v) = Y_F_, v? —

i=1"1
fi_gﬂ v? of signature (p, q), where p+ ¢ = n. Dirac introduced matrices that
provided a representation of the Clifford algebra of Minkowski space.

In a series of papers, the real matrix representations and various properties
of the Clifford algebra C¥¢,, , have been established and developed [1-3,5-8]. We
constructed matrix algebras Ly, 4(R) and San (R) whose elements are real matrix
representation of the Clifford algebra C'¢,, , for some p and ¢, where p+ g = n.
The size of the matrix representation of the elements in the Clifford algebra
Clp 4 is 2™ x 2™, Thus, if we can reduce the size of the matrix representation,
then it would be easier to understand.

In this paper, we will construct a subalgebra Ran(C) of the matrix algebra
Mo (C) and show that Ron (C) is isomorphic to the Clifford algebra C/,, , for
some p and ¢g. The size of the elements in Ran(C) is 277! x 2"~ which is
significantly smaller than the size of the elements in the algebra L, ,(R).

Also, the theory of spectrum of matrices attracts more and more attention
because of its important role in various applications including quantum physics
and computer sciences [4,9,10]. In a second part of this paper, we give infor-
mation about the spectrum of the constructed matrix representation of the
elements in the Clifford algebra C'/,, 4.
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2. Complex matrix representations of the Clifford algebras

We begin by defining terms necessary to use. Let

= {(0 0 Viaver), m={(2 2 )mser)

We will call the matrix in Ty (or Tg) by the I-type matrix (or R-type matrix)
[7].
Consider the following Pauli matrices.

(10 (01 (0 —i (1 0
9= 1) r=\V10) 2= i o) = \o —1)
Then,

0109 = 031 = —0201, 0203 = 011 = —0302, 0103 = —02l = —0307.
Now, we construct the subalgebra Ran (C) of the matrix algebra M. (C) using
the Pauli matrices as follows:

For n =1, let
AWM = Aoy + Aloy, BW = Blos — Bloyi,
where A}, A}, B}, B3 € R. Also, define r) = AM) + BMj and
R1 (C) = {7"(1) € My(C) | AL, Bl e R, t = 1,2} .

For n = 2, replace A} and A} by A200 + A0y and AZo3 — A304i, respectively.
Also, replace B} and B3 by Bioy+ B30, and B3o3— B304i, respectively. Then,
we obtain

B B

Ay AT A A3

A2 —
Ag —Ag A; Aé
Ay —A3 A3 Al
=00 ® (Afo'o + A%Oj) +01® (A%O'g — AEO'QZI),
B B B B
B® = B% Blz _B% 332
B% —B% —312 —B%
B? -B? -B? -p?
= 03 ® (Bioo + B3o1) + (—02i) ® (Bjos — Bioai).
Now, define

A? + B%?i A%+ B3i AZ-B2i —A%+ B
A%+ B%i A?+B}i A?-B%i —A3+ B%
A%+ B2i —A3-DB}i A? - B A3 - B3i
A2+ B3 —A2-B2i A3-B3i A?-B%i

#2) — A 4 B@); —

and
R (C) = {r® e My(C) | A2, BZe R, t=1,2,3,4}.
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For n = 3, replace A2 and A3 by A3og+ Ao and Adog+ Agoq, respectively.
Also, replace A% and A2 by A3os — Ajoei and ASos — A3oqi, respectively.

Furthermore, replace B} and B3 by Bjog + B3oy1 and B3og + Bio, re-
spectively. Also, replace B3 and B? by B3jos — Bjoai and B3os — Bioai,
respectively. Then, we obtain an 8 x 8 matrix r(3) = A®) + BG); where

A®) = 5y ® {00 ® (Alog + A3o1) + 01 ® (Ados — Alooi)}

+01® {03 ® (4300 + Ado1) + (—02i) ® (Ao3 — Adoai)},
B® =53 ® {00 ® (Biog + B3o1) + 01 ® (Bjos — Biosi)}

+ (—02i) ® {03 ® (B3oo + Bio1) + (—02i) ® (Bios — Biosi)} .

Thus, the matrix representations of A®) and B®) are the following 8 x 8 ma-
trices:

A3 A3 AR —AD AT AP AP A
A3 A3 A3 A3 A3 A3 AP AP
A§ —A3 A3 A3 A3 —A3 A3 A3
A3 —A3 A3 A3 A3 —A3 A3 A3

3

AV=1 0w a4 A 4 A |
A4 —ad a4l A3 Al Al
A AT D A AR a3 oAb A3
AR —A7 AR A3 A A7 A3 A
B} B} B -Bj -By -Bj B} -B§
B} B B -Bj -Bf -Bj B{ -B}
B - B B - B BB

g®_ | Bi -Bf B Bf -Bf B} Bi B}

B B -B} B -B} -Bj -Bj Bj
B By -B{ B? -B} -B} -Bj Bj
B -B{ -B; -Bf -Bj Bj -Bj -Bj
B§ -B? -B§ -B] -B{ Bj -Bj -B}
Now, if we let 73 = A®) 4 B®)j then ) is the following matrix:

A3+ B} A3+ B3i A3+ B3 —A}—B3i A3 -B3i A} - B —A}+ B2 A}- Bgi
A3+ B3i A+ B} A}+ B —A3-B3i A} -Bi A - B3i —A}+Bji A}- B
A3+ B3i —A}—B}i A} +B}i A3+ B3i A2-B3i —A}+B3i —A3+ B3 —A}+ Bdi
A3+ B}i —A3-—B3i A3+Bji A3+ B} A3-Bii —A3+ B} —A}+Bji —Ai+ Bl
A3+ B3 A}+ Bl -A3-B¥ A3+ Bl A-BYi A}-B3i  A}-B}i  —A}+Bii
A¢+Bgi A2+ B —A3-Bi A3+ B} A3-DBsyi Al -DBji  A}-Bji —A3+DBii
A2+ B3 —A3-DB3i —-Al-DBli —-A}-DBii A3-DBji —-Al+DB}i A}-B}i A}-DBji
A3+ Bdi —A$—B3i —A3-Bi -A}-B3i A}-B}i -A3+B3ji A3-—B3i A} - Bji

Let
Ros(C) = {r® e Mg(C) | A2, B} e R, t=1,2,...,8}.

Continuing the process successively, we obtain

A(n) = 0g ® A(ln_l) + o1 ® B%n_l)7
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B™ =030 A"V + (~owi) © By

for some A;n'_l) and B](-n_l), j =1,2. Now, define (™ = A 4 B(")j and
Ron (C) = {r™ € Myn(C) | AP, B € R, t=1,2,...,2"}.

Also, let Syn(R) be the set consisting of A™ and define Ty~ (R) by the set

consisting of B(™) in the process. Then, the following properties can be proved.

Proposition 2.1. Let 1™ € Ryn(C). Then,

(1) rm = < g g >-|-< ]er :g >i, for some E,F,G,H € Myn-1(R).

(2) (i) The t-th row of 2 x 2 block entries of (™) is of the following shape;
(Pi1,Qi2, Pisy .y Quon—1) + (X4, Yio, Xi3, ..o, Yion—1)4, if t is an odd integer,
(Qu1, P2, Qi3 - -, Pron—1) + (Yi1, X4, Yis, ..., Xpon—1)i, if t is an even integer,

(ii) The ¢-th column of 2 x 2 block entries of ™) is of the following shape;

Py Xie

Q2¢ Yo
P. 3¢ + XBZ

, if € is an odd integer,

Qan—1¢ Yon-1g

Qe Yie

Py Xog

Q3¢ + Y3 i, if € is an even integer.
P2n—1€ XQn—l(

Here, Py, X4y € TT and Que, Yo € Tr for all t and £.

Proposition 2.2. Let rin),rén) € Ran(C) and let My + Ny i be the (t,£)-th
2 x 2 block entry of rin)rén). Then,

(1) My, Nep € Tt if t + £ is an even integer.

(2) My, Nep € Tr if t + £ is an odd integer.
Proof. We will prove (1) in the case that ¢ and ¢ are all odd integers and
the other cases can be proved similarly. Let rin) = A(ln) + Bg”)i and ré") =
A 4 BMi for some A A € Syn (R) and B, B™ € Ty (R). Note that

My = (t-th row of 2 x 2 blocks of AYL)) (¢-th column of 2 x 2 blocks of Aén))

—(t-th row of 2 x 2 blocks of B{"™) (¢-th column of 2 x 2 blocks of B{™),

)
Ny = (t-th row of 2 x 2 blocks of Agn)) (£-th column of 2 x 2 blocks of Bén))

+(t-th row of 2 x 2 blocks of B%n)) (¢-th column of 2 x 2 blocks of Aén)).
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Now, let
t-th row of 2 x 2 blocks of A( ™ = = (Pn, Qu2, Pi3y .., Qion—1),
t-th Tow of 2 x 2 blocks of B{™ = (X1, iz, X3, - .., Yign-1),
¢-th column of 2 x 2 blocks of A( ") = = (P, Qy, P;,Z, ce Q;n,lé)T7
£-th column of 2 x 2 blocks of B(n) (X4, Yoy, ng, e ,Yémlé)T,

for some Ptg,Pte,th,Xté € Tr and th,Qthg,Yw € Tr. Then,

My = (P, Qu2, Pis, -, Quan-1)(Pio, Qo Py -, Q)"

— (X1, Yi2, Xz, - Yion1)(X1p, You, Xago oo Youory)
Nie = (Pi1,Qe2, Pes, - -, Quan—1)(X 10, Yag, Xag - Yoguorg)

+ (X1, Yie, X3, -, Yion—1)(Pyy, Qap Pago -, Qo)™

Note that Pis(Po,)", Qts(Qu)”s Xus(X )T, Yis(Yo) T, Prs(X)"s Qes (Y07,
th(Ps )7, YtS(QS )T are all in T; and hence My, Ny € T7. O

Lemma 2.3. Let (™) = A" + BMj for some A™ € Syn(R) and B™ €
Ton (R). Then, A™B™ € Tya(R).

Proof. Obviously A BW € Ty (R). Assume that A B(™) ¢ Ty (R). From
the construction, A™+Y) € Sou(Tr U Tg) and B Y € Tom(T; U Tg) as
2™ x 2™ matrices with 2 x 2 block matrix entries. Note also that (p,¢)-th
2 x 2 block matrix entry of A+ B(m+1) can be obtained by virtue of the rule
to get (p, q)-th real entry of AM B(m)  Thus, by the mathematical induction
hypothesis, the 2 x 2 block entries of A(m+1) B(m+1) pregerve the relationships
about the structure between row and column entries of Tom (T7 U Tg). Also,
(p, 1)-th 2 x 2 block entries of A+ B(m+1) are in Ty if p is an odd integer and
(p,1)-th 2 x 2 block entries of A™*+1) B(m+1) are in T if p is an even integer
by proposition 2.2. Therefore, the lemma is proved. O

Theorem 2.4. Ron(C) is a subalgebra of the matriz algebra Man (C).

Proof. In order to prove the theorem, it is enough to show that Ron(C) is
closed under the multiplication. Let r(n) rén) € Ran(C). We will show that
(n) ( ) € Ron (C) by the mathematical induction for n.
Ifn =1, then rgl) = Agl)—i—Bgl)i and rél) = Aél)—i—B(l)z for some A; (1) Aél) €
So1(R) and B{Y, B{Y € Ty (R). Thus,

1 1 1 1 1 1 1 1 1 1)\ -
2D = (AP AP — BO B+ (AP B + B ALY

Since Agl)Agl) —BPBS) € Tt and Agl)Bél)—i-B;l)Agl) € Tr, we have 7‘?)7“51) €
Ro1(C).
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Assume that it is true for n = m. That is, if rim) = Agm) + B%m)i and
rém) = A(Qm) + Bém)i for some Agm), Aém) € Som (R) and Bgm), Bém) € Tom (R),
then

P00 (40 A7) _ ) pm) (A0 ) L B 400, € Ry (©).
Now, let r(mH) (m+1) € Rom+1(C) and

r§m+1) _ A§m+1) +B£m+1)l Tngrl) :Angrl) +B§m+1)2

for some Agmﬂ), Aém—H) € Som+1(R) and Bgmﬂ), BémH) € Tom+1(R). Since

m+1 m+1 m+1 m+1 m+1 m—+1
P (4D ) i gl

+ (A§m+1)B£m+1) + B§m+1)Aém+1))i’
it is enough to show that

Agm+1)Agm+1) o B£m+1)Bém+1) € Symis (R),

A§m+1)B§m+1) + B£m+1)Agm+1) S T2m+1(R)-
Note that
A — 500 A™ 4o @ B, AP = 600 ASY + 0y @ B,

B =530 AT — hi@ B{™,  BI™Y =30 A™ — 0yi @ B{™
for some A,Em), Bt(m), t=1,2,3,4. Thus,
AT ALY = o @ (A AT + BIMBIM) 401 @ (AT BY™ + BI™ AT,
BUHD B g (40T 4lm) _ plm) plm)y _ o 40m) glm) _ plm) 4(m)y
A BT — i (A AT + BI™M B — yi@ (AT BI™ 4+ BI™ A(™),
BT AT = e (AT AT — BS™ BS™) 4+ 0gi@ (AT BI™ — B™ AL™).

By the mathematical induction hypothesis, Agm)Agm) - Bgm)Bgm) € Som (R)
and hence Bgm)Bém) € Som (R) since Agm)A(m) € Som(R). Thus, A(m A(m) +
B BUm) AL 4m) gl plm)  am) gm) | plm) glm) oyl gl
B{™ B{™ are all in Som (R).

On the other hand, A" B{™ + BI™ AM™ ¢ Ty..(R) by the mathemati-
cal induction hypothesis. Thus, Bt(m)A((g ™ e Tom (R ) by Lemma 2.3 and we
obtain A{™ B{™ + BI™ Alm A i) _ plm) 40 4(m g(m) 4 plm) 4(m)
A BE™ — B AM™) are all in Tym (R). Thus, A{"“ Agm+1> B§m+1>B§m+”
€ Sym+1(R) and Angrl)Béerl) + Bngrl)AgnHl) € Tom+1(R). Therefore,
rgmH)rémH) € Rom+1(C) and the theorem is proved. O
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Theorem 2.5. The subalgebra Ran (C) of Man (C) is isomorphic to the Clifford
algebra Cl, 4 for some p and q. Concretely,

(1) Ron(C) = C’é[%]Jrz’[%] if n is an odd integer.

(2) R2n(C) = Cln n 4y if n is an even integer.
Here, [x] is the greatest integer less than or equal to the real number x.

Proof. Define A™) € Syn(R) and B™ € Ty (R) as follows:

- (m) = 17 t=2"
(t,1)-th entry of A { 0, otherwise
t — 27l

1
- (n) — ’
(t,1)-th entry of B { 0. otherwise.

Also, define o, € Ron(C) as follows:
IQn’ m = 0
Ay = A o =1.2.....n

BM i m=n+1.

Since the entries in the first column of v, € Ra(C) determines the other
entries of «,,, we can express a,, as follows:
Let K1 = —o%i and for m > 2, let

K, = < Opnt —Kina ) S M2W(R)

Kmfl 02771—1

and

_ 027“—1 Kpna

Tm—l - ( Kmfl 02m71 ) S M2m (R)

Then,

01 02 e OQ 02

02 g1 e 02 02

02 OQ e g1 02

Oy Oy -+ Oy o
and, for 2 < m < n,

Tyei Ogm -+ Ogm

Oom  Tpq - Ogm
. . . (S Mgn (R)

Qypy, =

02771 02771 e Tmfl
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Also, for n > 2,

02 02 e 02 —09
02 02 R g9 02
= | ¢ i i | €M)
02 —09 e 02 02
o Oz -+ Oz Oq

if n is an even integer and

02 02 e 02 g9
02 02 e —09 OQ
onpr=[ f ot | €Mu(C)
02 —09 e 02 02
g9 02 e 02 02

if n is an odd integer. Note that we can express a., in tensor form as follows:
a1 =00®00®agR - Qg ® oy,
ay=00R09® @01 ® (—021),

oo R 09 ® -+ @01 ® (—021) ® (—02i),

as

Ay =01 ® (—021) ® -+ - @ (—021) ® (—021),
Upp1 = (—021) @ (—021) ® - - ® (—021) ® (—021) 1.

Since 03 = 0% = I and (—02i)? = —I5 for all m with 1 <m < n, we obtain
9 —1Ion, if m is an even integer
ab = . . .
m Ion, if m is an odd integer
and
2 —Iyn, if n is an even integer
@ = e .
ntl Ion, if n is an odd integer.
Moreover, for all m and £ with 1 < m,¢ <n+1land m # £, c,, ap = —ap
since o109 = —o9071. Hence o, a, . . ., ayy, 1 can be considered as the vector

generators of a Clifford algebra. Since San(R) = C6[2]+17[ﬂ] if n is an odd

integer and Son (R) = Cfn » if n is an even integer [6], we now can conclude
that Ran (C) = CE[H]+2 2] if n is an odd integer and Ron(C) = Cln .y if n
is an even integer. O

Example 2.6. For n = 3, Ry3(C) = (Y31 and the vector generators are
a1 =00R09 R0y, az=00® 0@ (—02i),

a3 = 01 (24 (70'27:) (24 (70'22‘), g = (7021') X (7(721') X (7(7211)2‘.
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Also, the corresponding matrix representations are the following 8 x 8 matrices.

0100 0O0O0O 0 0 0O .10 0 0 O
1000 0O0O00O0 0o 01 0 0 0 0 O
0001 O0O0O0O0 0 -1 0 0 0 0O 0 O
ay = 001 00O0O0O0 g = 1 0 0 0 0 0 0 O
000O0O0T1O0O0|’ o 0 0 0 0 0 0 -1
0 00O01O0O0O0 0o 0 0o 0 0 0 1 O
000 O0O0TO0OTO0TI1 0o 0 0 0 0 -10 O
0 00O0O0OO0OT1TOPO0 0o 0 0 0 1 0 0 O
o 0 0 00 0 0 1 0 0 0 0 0 00 —
o 0 0 00 0 -10 0 0 0 0 0 0 4 O
o 0 0 00 -1 0 O 0 0 0 0 0 ¢« 0 O
s — o 0 0 01 0 0 O = 0 0 0 0 — 00 O
6o o 0 10 0 o0 0]~ 0 0 0 ¢« 0 0O0 O
o 0 -1 00 0 0 O 0 0 -« 0 0 0O0 O
0o -1 0 00 0 0 O 0 —¢ 0 0 0 0 0 O
10 0 OO0 O 0 O i 0 0 0 0 0 0 O

As one can see, the matrix representations of the vector generators have
simple and regular patterns and so it makes it easy to investigate a lot of
the algebraic properties. For example, tr(a,,) and det(a,,) can be calculated
automatically for all m =1,2,... , n+ 1.

Theorem 2.7. Let aq,a,...,0n+1 be the matrix representations of vector
generators of the Clifford algebra constructed in the proof of theorem 2.5. Then,
(1) tr(am) =0, m=1,2,...,n+ 1.
(2) det(aw,) =1 ordet(a,) = =1, m=1,2,...,n+ 1.

3. Spectrum of matrix representations of the Clifford algebras

In this section, we give some information about the spectrum of the con-
structed complex matrix representation. The spectrum of A is denoted by

spec(A).
Theorem 3.1. Let A= Z::;ll bmem. Then, A has 2™ complex eigenvalues.

Proof. Note that det(A — Alan) = 0 generates 2" degree equations. Since C is

an algebraically closed field, the result follows. O
Theorem 3.2. Let A = Zz:;ll bmcm. Then,

n—1
spec(A) C {z eCllz < Z |be| + [by, + bn+1i|} :

(=1

Proof. Let A = (ats)onx2n. Then, Ri(A) = 3 lais| = >y laiae| and
Ri(A) = Rpp(A) for all m =1,2,...,n+ 1. Thus,

2™ n
spec(A) C U {26C|z—amm| < Z|a121|}
m=1

=1
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by the Gersgorin theorem [5]. But, @y, = 0 for all m = 1,2,...,n + 1 and
|aqe| = |be| for all 1 < £ < m —1 and |ajzn| = |by + bpt1%|. Hence

n n—1
2€C||z = mm| <D larpe| p =42 €C[l2| <D el + by + bl
=1 =1
and we prove the theorem. (I

Corollary 3.3. (1) spec(anm,) C{z€C||z] <1} foralll <m <n+1.
(2) Let A= 22:;11 . Then, spec(A) C {z € C||z| <n—1+ 2}

Specially, we can easily obtain the spectrum of the pure imaginary generator
Qp41.

Example 3.4. If n is an odd integer, then spec(an41) C {—1,1}.

Proof. Let A\ € spec(apt1). Then, (a1 —Alan)X = O for some X # O. Note
that (Ozn+1 — AIQn)(Oén_i_l — )\IQ’VL)T = (AZ — 1)]2n and so det(OLn+1 — )\1271)2 =
(A2 —1)2". Thus, we obtain A = —1 or A = 1. O

Example 3.4 shows that eigenvalues of the pure imaginary generator occur
on the boundary of the Gersgorin disc.
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