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SHECHTER SPECTRA AND RELATIVELY DEMICOMPACT

LINEAR RELATIONS

Aymen Ammar, Slim Fakhfakh, and Aref Jeribi

Abstract. In this paper, we denote by L the block matrix linear relation,

acting on the Banach space X ⊕ Y , of the form

L =

(
A B

C D

)
,

where A, B, C and D are four linear relations with dense domains. We
first try to determine the conditions under which a block matrix linear

relation becomes a demicompact block matrix linear relation (see Theo-

rems 4.1 and 4.2). Second we study Shechter spectra using demicompact
linear relations and relatively demicompact linear relations (see Theorem

5.1).

1. Introduction

Linear relations were introduced into functional analysis by J. von Neumann
[17], motivated by the need to consider adjoints of non-densely defined linear
differential operators, which were reported previously by E. A. Coddington
and A. Dijksma [9] and Dikjsma et al. One main reason that linear relations
are more convenient than operators is that one can define the inverse, the
closure and the completion for a linear relation. Interesting works on multi-
valued linear operators including the treatise on partial differential relations
were identified by M. Gromov [13]. The application of multivalued methods
to the solutions of differential equations was demonstrated by A. Favini and
A. Yagi [11]. The development of fixed point theory for linear relations to the
existence of mild solutions of quasi-linear differential inclusions of evolution
including many problems in fuzzy theory was set forward by researchers (see,
for instance [3, 4, 12]).

The notation of demicompactness for linear operators (that is, single valued
operators) was introduced into the functional analysis by W. V. Petroshyn
[16] to discuss fixed points. Since much attention was paid to this notation,
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such research papers as [14, 16] used it. In 2012, W. Chaker, A. Jeribi and B.
Krichen achieved some results on Fredholm and upper semi-Fredholm operators
involving demicompact operators [8].

In what follows, we will present the definitions which were set forward by
A. Ammar, H. Daoud and A. Jeribi in 2017 [5], who extended the concept
of demicompactness of linear operators on multivalued linear operators and
developed some properties.

In 2018, the concept of relatively demicompactness of linear operators was
further developed by A. Ammar, S. Fakhfakh and A. Jeribi [6], who extended on
multivalued linear operators and developed some properties. Indeed, they have
determined the conditions under which a linear relation µT for each µ ∈ [0, 1)
becomes a demicompact linear relation and they displayed some results on
Fredholm and upper semi-Fredholm linear relations involving a demicompact
linear relation. They also provided some results in which a block matrix of
linear relations becomes a demicompact block matrix of linear relations.

The central objective of this work is to pursue the analysis start by [6] and
[5] and extend it to more general classes, using the concept of relatively demi-
compact linear relations. Basically, we explore some features of relatively linear
demicompact linear relations and provide a necessary and sufficient condition
on matrix linear relations so as to be a demicompact matrix linear relation. Fi-
nally, we investigate Shechter spectra using demicompact linear relations and
relatively demicompact linear relations.

Our paper is organize as follows: In Section 2, we recall some definitions,
basic notions and notations on linear relations that shall be used in the rest
of this article. In Section 3, we study some preliminary results on relatively
demicompact linear relations which will be subsequently needed in our inves-
tigation. In Section 4, we give a necessary and sufficient condition on matrix
linear relations so as to be a demicompact matrix linear relation. In the last
Section, we investigate Shechter spectra using demicompact linear relations and
relatively demicompact linear relations.

2. Auxilary results

Throughout this article, we denote as X, Y and Z complex normed linear
spaces, over K = R or C.
L(X,Y ) denotes the class of all linear bounded operators from X into Y .
A multivalued linear operator (or a linear relation) T from X to Y is a

mapping from a subspace D(T ) of X, called the domain of T ,

D(T ) := {x ∈ X : Tx 6= ∅}

into P(Y )\{∅} (collection of non-empty subsets of Y) such that

T (αx+ βy) = αT (x) + βT (y)

for all non-zero scalars α, β ∈ C and x, y ∈ D(T ).
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If T maps the points of its domain to singletons, then T is said to be a single
valued linear operator (or simply an operator).

In this notation, we denote as LR(X,Y ) the class of all linear relations from
X into Y , if X = Y , it simply notes LR(X,X) := LR(X).

We denote by LRB(X,Y ) the class of all bounded linear relations on X into
Y and abbreviate LRB(X,X) to LRB(X).

A linear relation is uniquely determined by its graph, G(T ), which is defined
by

G(T ) := {(x, y) ∈ X × Y : x ∈ D(T ) and y ∈ Tx}.
The inverse of T is the linear relation T−1 defined by

G(T−1) := {(y, x) ∈ Y ×X : (x, y) ∈ G(T )}.

According to these definitions and notations, we state the following proposition:

Proposition 2.1 ([10, Proposition I.2.3]). The following properties are equi-
valent:

(i) T is a linear relation.
(ii) G(T ) is a linear subspace of X × Y .
(iii) T−1 is a linear relation.
(iv) G(T−1) is a linear subspace of Y ×X.

Definition 2.1 ([10, Definition II.5.1]). Let T ∈ LR(X,Y ). The closure of T ,
denoted T , is defined in terms of its graph

G(T ) := G(T ).

It is clear that T ∈ LR(X,Y ).
A linear relation T is said to be closed if its graph G(T ) is a closed subspace

of X × Y . We denote by CR(X,Y ) the class of all closed linear relations on X
into Y and abbreviate CR(X,X) to CR(X).

Definition 2.2 ([10, Definition II.5.2]). The linear relation T is said to be
closable if T is an extension to T ; i.e., if

Tx = Tx for all x ∈ D(T ).

Lemma 2.1 ([10, Corollary I.2.4]). Let T be a linear relation. Then, T (0) and
T−1(0) are linear subspaces.

Let U denotes arbitrary nonempty sets. Given a subset M ⊂ U , we write

T (M) :=
⋃
{T (m) : m ∈M ∩ D(T )}

called the image of M , with

R(T ) := T (U) (= T (D(T )))

called the range of T .
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Definition 2.3 ([10, Definition I.2.6]). (i) The subspace T−1(0) is called the
null space (or kernel) of T , and is denoted N (T ). We shall use both N (T ) and
T−1(0) throughout the sequel.

(ii) T is called injective if N (T ) = {0}, that is, if T−1 is a single valued
linear operator.

(iii) T is called surjective if R(T ) = Y .
(iv) If T is injective and surjective, we say that T is bijective.

Let M be a subspace of X such that M ∩D(T ) 6= ∅ and let T ∈ LR(X,Y ).
Then, the restriction T|M , is the linear relation given by

G(T|M ) := {(m, y) ∈ G(T ) : m ∈M} = G(T ) ∩ (M × Y ).

For S, T ∈ LR(X,Y ) and R ∈ LR(Y, Z), the sum S + T and the product RS
are the linear relations defined by

G(T + S) := {(x, y + z) ∈ X × Y : (x, y) ∈ G(T ) and (x, z) ∈ G(S)}, and

G(RS) := {(x, z) ∈ X × Z : (x, y) ∈ G(S), (y, z) ∈ G(R) for some y ∈ Y }
respectively, and if λ ∈ K, λT is defined by

G(λT ) := {(x, λy) : (x, y) ∈ G(T )}.
If T ∈ LR(X) and λ ∈ K, then the linear relation λ− T is given by

G(λ− T ) := {(x, y − λx) : (x, y) ∈ G(T )}.

The quotient map from Y into Y/T (0) is denoted QTT and it stands for an
operator (single valued). Therefore, we can define:

‖Tx‖ := ‖QTTx‖ for all x ∈ D(T )

‖T‖ := ‖QTT‖
called the norm of Tx and T respectively. We note that ‖Tx‖ and ‖T‖ are not
real norms, in fact a nonzero relation can have a zero norm.

Definition 2.4 ([10, Definition V.1.1]). Let T ∈ LR(X,Y ). T is said compact

if QTT (BD(T )) is compact in Y where BD(T ) := {x ∈ D(T ) : ‖x‖ ≤ 1}.
We denote by KR(X,Y ) the class of all compact linear relations on X into

Y and abbreviate KR(X,X) to KR(X).

Now, in the following definition, we define the graph operator. It is used to
reduce a linear relation T to a bounded everywhere defined relation.

Definition 2.5 ([10, Definition IV.3.1]). Let T ∈ LR(X,Y ), and let XT denote
the vector space D(T ) normed by

‖x‖T := ‖x‖+ ‖Tx‖ for all x ∈ D(T ).

Let GT ∈ LR(XT , X) be the identity injection of XT = (D(T ), ‖ · ‖T ) into X,
i.e.,

D(GT ) = XT , GT (x) = x for all x ∈ XT .
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Definition 2.6 ([10, Definition I.6.6]). Let T ∈ LR(X,Y ). The quantities

α(T ) := dim(N (T )) and β(T ) := codim(R(T )) = dim(Y/R(T ))

are called the nullity (or the kernel index) and the deficiency of T , respectively.

We also write β(T ) := codim(R(T )). The index of T is defined by i(T ) :=
α(T ) − β(T ) provided that both α(T ) and β(T ) are not infinite. If α(T ) and
β(T ) are infinite, then T is said to have no index.

Definition 2.7 ([10, Definition V.1.1]). (i) A linear relation T ∈ LR(X,Y ) is
said to be upper semi-Fredholm, and denoted by T ∈ F+(X,Y ), if there exists
a finite codimensional subspace M of X for which T|M is injective and open.

(ii) A linear relation T is said to be lower semi-Fredholm, and denoted by
T ∈ F−(X,Y ), if its conjugate T ′ is upper semi-Fredholm.

For the case when X and Y are Banach spaces, we extend the class of
closed single valued Fredholm type operators given earlier to include closed
multivalued operators. Note that the definitions of F+(X,Y ) and F−(X,Y )
are consistent with

Φ+(X,Y ) := {T ∈ CR(X,Y ) : R(T ) is closed, and α(T ) <∞},

Φ−(X,Y ) := {T ∈ CR(X,Y ) : R(T ) is closed, and β(T ) <∞}.
If X = Y , it simply implies Φ+(X,Y ), Φ−(X,Y ), F+(X,Y ), and F−(X,Y )

by respectively Φ+(X), Φ−(X), F+(X), and F−(X).

Lemma 2.2 ([1, Lemma 2.1]). Let T : D(T ) ⊆ X −→ Y be a closed linear
relation. Then

(i) T ∈ Φ+(X,Y ) if and only if QTT ∈ Φ+(X,Y/T (0)).
(ii) T ∈ Φ−(X,Y ) if and only if QTT ∈ Φ−(X,Y/T (0)).

Theorem 2.1 ([10, Theorem V.10.3]). Let X be a Banach space, Y a normed
space and T ∈ LR(X,Y ). Then, the following properties are equivalent:

(i) T ∈ F+(X,Y ).
(ii) There exists a bounded linear operator A and a bounded finite rank

projection operator P such that

AT = ID(T ) − P.

Proposition 2.2 ([10, Proposition V.2.6]). Let T, S ∈ LR(X). If T is single
valued and S, T ∈ F+(X), then ST ∈ F+(X).

3. Preliminaries results on relatively demicompact linear relations

This section exhibits some definitions and auxiliary results which will be
needed in the rest of this paper. Besides, it displays conditions on which a
linear relation becomes a relatively demicompact linear relation. From this
perspective, we start by the following lemma, to which we give an equivalence
with Definition 3.2:
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Definition 3.1 ([5, Definition 3.1]). A linear relation T : D(T ) ⊆ X −→ X is
said to be demicompact if for every bounded sequence {xn} in D(T ) such that

QI−T (I − T )xn = QT (I − T )xn → x ∈ X/T (0),

there is a convergent subsequence of QTxn.

Definition 3.2 ([7, Definition 1.4]). Let X and Y be Banach spaces. If
T : D(T ) ⊆ X −→ Y and S : D(S) ⊆ X −→ Y are two densely defined
linear relations with S(0) ⊆ T (0) and D(T ) ⊆ D(S), then T is said to be S-
demicompact (or relative demicompact with respect to S) if for every bounded
sequence {xn} in D(T ) such that

QS−T (S − T )xn = QT (S − T )xn −→ y ∈ Y/T (0),

there is a convergent subsequence of QTSxn. We denote by

DCS(X,Y ) = {T ∈ CR(X,Y ) such that T is S-demicompact}.

Note that for S = I, we denote by

DC(X) = {T ∈ CR(X) such that T is demicompact}
and for µ ∈ C,

DCµ(X,Y ) = {T ∈ CR(X,Y ) such that ‖Tx‖ ≤ |µ|‖x‖
for all x ∈ D(T ) and |µ| < 1}.

Remark 3.1. For T = 1
2I, T ∈ DCµ(X). Therefore, DCµ(X) 6= ∅.

When D(T ) lies in a finite dimensional subspace of X, the condition of the
relative demicompactness is automatically satisfied. As an example of an S-
demicompact linear relation, we mention linear relation T such that (QT (S −
T ))−1 exists and is continuous on its range R(QT (S − T )). Note also that
if QTS is invertible and (QTS)−1T is compact, then T is an S-demicompact
linear relation.

Remark 3.2. Note that for S = I, we recall the usual definition of demicom-
pactness of a relation introduced by A. Ammar et al. in [5].

Lemma 3.1 ([7, Lemma 2.2]). Let T : D(T ) ⊆ X −→ Y be a linear relation
and S : D(S) ⊆ X −→ Y be a continuous linear relation. If QS − QT is
compact, then T is S-demicompact if, and only if, QTT is QSS-demicompact
if, and only if, QTT is QTS-demicompact.

Proposition 3.1 ([15, Theorem 2.3]). Let T : D(T ) ⊆ X −→ X and S :
D(S) ⊆ X −→ Y be densely defined closed linear operators with D(T ) ⊆ D(S)
such that S − T is closed. If T is S-demicompact, then (S − T ) is an upper
semi-Fredholm operator.

Lemma 3.2 ([5, Lemma 3.3]). Let D be a closed linear subspace of a space
X. If {xn} in X is a convergent sequence, then {QDxn} is also a convergent
sequence.
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Lemma 3.3 ([5, Lemma 3.4]). Let D be a compact linear subspace of a space
X. If {xn} in X is a sequence such that {QDxn} is a convergent sequence,
then {xn} has a convergent subsequence.

Theorem 3.1 ([7, Theorem 3.2]). Let T : D(T ) ⊆ X −→ X be a closed linear
relation. If T is demicompact and I−QT is compact, then I−T is a Fredholm
relation and i(I − T ) = 0.

Lemma 3.4. Let T : D(T ) ⊆ X −→ Y and S : D(S) ⊆ X −→ Y are two
densely defined linear relations with S(0) ⊆ T (0), D(T ) ⊆ D(S) and QT (S−I)
is compact. Then

T is S-demicompact if and only if TGS is demicompact.

Proof. Suppose that T is S-demicompact. Let {xn} be a bounded sequence of
D(T ) ⊆ D(S) such that {QTGS

(I − TGS)xn} = {QT (I − T )xn} converges. In
other words,

QT (S − T )xn = QT (I − T )xn +QT (S − I)xn,

then we have {QT (S − T )xn} and we use T as an S-demicompact multival-
ued linear relation. We obtain {QTSxn} which has a convergent subsequence.
Finally, we get

QTxn = QT (I − S)xn +QTSxn.

Therefore, {QTxn} has a convergent subsequence. Conversely, let TGS be a
demicompact. Let {xn} be a bounded sequence of D(T ) ⊆ D(S) such that
{QT (S − T )xn} converges. On the other side, assuming that

QT (I − TGS)xn = QT (I − T )xn = QT (S − T )xn −QT (S − I)xn,

then {QT (I − TGS)xn} converges. Using {QT (I − TGS)xn} and the fact that
TGS is demicompact, we obtain {QTGS

xn = QTxn} which has a convergent
subsequence. Finally, we have

QTSxn = QTxn −QT (I − S)xn.

As a matter of fact, {QTSxn} has a convergent subsequence. �

Proposition 3.2. Let µ ∈ C and let T : D(T ) ⊆ X −→ X. If T ∈ DCµ(X),
then T ∈ DC(X).

Proof. Let T ∈ DCµ(X). Then

‖Tx‖ ≤ |µ|‖x‖,
−‖Tx‖ ≥ −|µ|‖x‖,

‖x‖ − ‖Tx‖ ≥ (1− |µ|)‖x‖.

So

‖x‖ ≤ ‖(I − T )x‖
1− |µ|

=
‖QT (I − T )x‖

1− |µ|
.(1)
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Now, take {xn} a bounded sequence of D(T ) such that QT (I − T )xn → y.
Applying Eq. (1), we get ‖xn−y‖ → 0. So, {xn} has a convergent subsequence.
Finally, by Lemma 3.2, we get {QTxn} which has a convergent subsequence.
So, T ∈ DC(X,Y ). �

Proposition 3.3. Let non-zero scalar µ ∈ C and let T : D(T ) ⊆ X −→ X be
a densely defined linear relation such that ‖Tx‖ ≤ |µ|‖QTx‖ for all x ∈ D(T ).
If |µ| < 1, then T is a demicompact linear relation.

Proof. Since

‖Tx‖ ≤ |µ|‖QTx‖,
−‖Tx‖ ≥ −|µ|‖QTx‖,

‖QTx‖ − ‖Tx‖ ≥ (1− |µ|)‖QTx‖,

then

(2) ‖QTx‖ ≤
‖QT (I − T )x‖

1− |µ|
.

Now, take {xn} a bounded sequence of D(T ) such that QT (I − T )xn → y.
Applying Eq. (2), we get ‖QT (xn − y)‖ → 0. Thus, {QTxn} has a convergent
subsequence. �

Proposition 3.4. Let T, T0 : D(T ) = D(T0) ⊆ X −→ Y , be a densely defined
linear relation and S : D(S) ⊆ X −→ Y be a densely defined closed linear
relation with D(T ) ⊆ D(S) and S(0) ⊆ T0(0) ⊆ T (0).

Suppose that T0 is S-demicompact and there exist a, b ∈ C such that |a| < 1
and for all x ∈ D(T )

‖Tx− T0x+ Sx− Sx‖ ≤ |a|‖Sx− Tx‖+ |b|‖Sx− T0x‖.

Then T is an S-demicompact linear relation.

Proof. Since, for all x ∈ D(T ), we have

‖Sx− T0x‖ − ‖Sx− Tx‖ ≤ ‖Tx− T0x+ Sx− Sx‖,
≤ |a|‖Sx− Tx‖+ |b|‖Sx− T0x‖.

Therefore,

(1− |b|)‖Sx− T0x‖ ≤ (1 + |a|)‖Sx− Tx‖.

Then,

‖Sx− T0x‖ ≤
(

1 + |a|
1− |b|

)
‖Sx− Tx‖.(3)

Now, take {xn} a bounded sequence of D(T ) such that QT (S − T )xn → y.
Applying Eq. (3), we get ‖QT0(S − T0)(xn− y)‖ → 0. So, QT0(S − T0)xn → y,
using the fact that T0 is S-demicompact. We obtain {QT0

Sxn} which has a
convergent subsequence.
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On the other side, we have

‖QTSxn‖ = d(T (0), Sxn)

≤ d(T0(0), Sxn)

= ‖QT0Sxn‖.

Then, we get {QTSxn} which has a convergent subsequence. �

Proposition 3.5. Let T, T0 : D(T ) = D(T0) ⊆ X −→ Y , be a densely defined
linear relations and S : D(S) ⊆ X −→ Y be a continuous and a densely defined
closed linear relation with D(T ) ⊆ D(S) and S(0) ⊆ T0(0) ⊆ T (0).

Suppose that T is continuous and T0 is S-demicompact and there exist a, b ∈
C such that |a| > 1 and for all x ∈ D(T )

‖Tx− T0x+ Sx− Sx‖ ≥ |a|‖Sx− T0x‖ − |b|‖Sx− Tx‖.

Then, T is an S-demicompact linear relation.

Proof. Since, for all x ∈ D(T ), we have

‖Tx− T0x+ Sx− Sx‖ ≤ ‖Sx− T0x‖+ ‖Sx− Tx‖
|a|‖Sx− T0x‖ − |b|‖Sx− T0x‖ ≤ ‖Sx− Tx‖+ ‖Sx− Tx‖.

Therefore,

(|a| − 1)‖Sx− T0x‖ ≤ (1 + |b|)‖Sx− Tx‖.

Then,

‖Sx− T0x‖ ≤
(

1 + |b|
|a| − 1

)
‖Sx− Tx‖.(4)

Now, take {xn} a bounded sequence of D(T ) such that QT (S − T )xn → y.
Applying Eq. (4), we get ‖QT0

(S − T0)(xn− y)‖ → 0. So, QT0
(S − T0)xn → y,

using the fact that T0 is S-demicompact. We obtain {QT0
Sxn} which has a

convergent subsequence.

‖QTSxn‖ = d(T (0), Sxn)

≤ d(T0(0), Sxn)

= ‖QT0Sxn‖.

Finally, we get {QTSxn} which has a convergent subsequence. �

Theorem 3.2. Let T : D(T ) ⊆ X −→ Y be a densely defined closed linear
relation and S : D(S) ⊆ X −→ Y be a continuous and a densely defined closed
linear relation with D(T ) ⊆ D(S) and S(0) ⊆ T (0). If QS − QT is compact,
then

S − T ∈ Φ+(X,Y ) if and only if T is S-demicompact.
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Proof. Suppose that S − T ∈ Φ+(X,Y ), by Lemma 2.2, we get

QS−T (S − T ) = QT (S − T ) ∈ Φ+(X,Y ).

Using Theorem 2.1, there exist a bounded linear operator A and a bounded
finite rank projection operator P such that

AQT (S − T ) = ID(T ) − P.

Let {xn} be a bounded sequence of D(T ) such that {QT (S − T )xn} converges
to QTx. Then {AQT (S − T )xn} converges to AQTx. So, {xn − Pxn} con-
verges to AQTx. Since P is compact, we obtain {xn} which has a convergent
subsequence. Finally, {QTSxn} has a convergent subsequence. Conversely, let
T be an S-demicompact and QS − QT be a compact linear relation. Using
Lemma 3.1, we find that QTT is QTS-demicompact. The latter implies and
using Proposition 3.1, we obtain QTS−QTT which is an upper semi-Fredholm
single valued. On the other side,

QS−T (S − T ) = QT (S − T ).

We notice that QS−T (S − T ) is an upper single valued linear operator semi-
Fredholm. Using Lemma 2.2, we obtain S−T which is an upper semi-Fredholm
relation. �

4. Demicompact block matrix of linear relations

In this section, we identify some definitions and notations about the block
matrix linear relations and provide conditions on the entries of a L to have a
demicompact block matrix of linear relations.

Let X, Y , and Z be three Banach spaces and T ∈ LR(X,Y ), S ∈ LR(X,Z).
Then, S is called T -bounded (or relatively bounded with respect to T ) if
D(T ) ⊂ D(S) and there exist non-negative constants a and b, such that

(5) ‖Sx‖2 ≤ a‖x‖2 + b‖Tx‖2 for all x ∈ D(T ).

In that case, the infimum of the constants a and b which satisfy (5) are called
the 1-bound and T -bound, respectively, of S.

We denote the block matrix linear relation by L:

L =

(
A B
C D

)
, D(L) :=

(
D(A) ∩ D(C)

)
⊕
(
D(B) ∩ D(D)

)
,

where A ∈ LR(X), B ∈ LR(Y,X), C ∈ LR(X,Y ) and D ∈ LR(Y ) are four
closable linear relations with dense domains.

Definition 4.1. Let ε ≥ 0 and δ ≥ 0. The block matrix of the linear relation
L is called:

(i) Diagonally dominant of order ε and δ if C is A-bounded with 1-bound
εC and A-bound δC , B is D-bounded with 1-bound εD and D-bound δB , ε =
max(εC , εB) and δ = max(δC , δB).
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(ii) Off-diagonally dominant of order ε and δ if A is C-bounded with 1-
bound εA and C-bound δA, D is B-bounded with 1-bound εD and B-bound
δD, ε = max(εA, εD) and δ = max(δA, δD).

Lemma 4.1 ([6, Corollary 3.1]). The block matrix linear relation L is closed
if one of the following conditions holds:

(i) L is diagonally dominant of order ε and δ < 1, A and D are closed,
B(0) ⊂ A(0) and C(0) ⊂ D(0).

(ii) If L is off-diagonally dominant of order ε and δ < 1, B and C are
closed, A(0) ⊂ B(0) and D(0) ⊂ C(0).

Lemma 4.2 ([6, Corollary 3.2]). The block matrix linear relation L is closed
if one of the following conditions holds:

(i) L is diagonally dominant, A and D are closed, B(0) ⊂ A(0), C(0) ⊂
D(0) and the relative bounds δC and δB of C and B, respectively satisfy

δ2
C(1 + δ2

B) < 1 or δ2
B(1 + δ2

C) < 1.

(ii) L is off-diagonally dominant, B and C are closed, A(0) ⊂ B(0), D(0) ⊂
C(0) and the relative bounds δA and δD of A and D, respectively satisfy

δ2
A(1 + δ2

D) < 1 or δ2
D(1 + δ2

A) < 1.

Lemma 4.3. Let the block matrix linear relation L and M be defined by:

L =

(
A1 B1

C1 D1

)
andM =

(
A2 B2

C2 D2

)
,

where A1, A2 ∈ LR(X), B1, B2 ∈ LR(Y,X), C1, C2 ∈ LR(X,Y ) and D1, D2 ∈
LR(Y ) such that A1(0) ⊂ B1(0) and D1(0) ⊂ C1(0). Then

QLM =

(
QB1

A2 QB1
B2

QC1
C2 QC1

D2

)
.

Proof. Let (x, y) ∈ (D(A2) ∩ D(C2)) ⊕ (D(B2) ∩ D(D2)) and ( ab ) ∈ M ( xy ).

( ab ) ∈
(
A2 B2

C2 D2

)
( xy ) =

(
A2x+B2y
C2x+D2y

)
. Then, a ∈ A2x + B2y and b ∈ C2x + D2y,

i.e., there exist a1 ∈ A2x, a2 ∈ B2y, b1 ∈ C2x and b2 ∈ D2y such that
a = a1 + a2 and b = b1 + b2.

QLM
(
x
y

)
= QL

(
a
b

)
.

Now, let us examine the expression QL ( ab ). Let ( uv ) ∈ QL ( ab ) if and only if

( uv )− ( ab ) ∈ L(0).

Notice that u − a ∈ A1(0) +B1(0) = B1(0) and v − b ∈ C1(0) +D1(0) =

C1(0).

{
u− a ∈ B1(0),

v − b ∈ C1(0).
Therefore,

{
u ∈ QB1a = QB1(a1 + a2),
v ∈ QC1b = QC1(b1 + b2),

so,

{
u ∈ QB1

(A2x+B2y) = QB1
A2x+QB1

B2y,
v ∈ QC1

(C2x+D2y) = QC1
C2x+QC1

D2y.

Finally, ( uv ) ∈
(
QB1

A2 QB1
B2

QC1
C2 QC1

D2

)
( xy ), i.e., QLM =

(
QB1

A2 QB1
B2

QC1
C2 QC1

D2

)
. �
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Remark 4.1. Unfortunately, there is no uniqueness in the expression QLM.

Remark 4.2. Let A1, A2 ∈ LR(X), B1, B2 ∈ LR(Y,X), C1, C2 ∈ LR(X,Y )
and D1, D2 ∈ LR(Y ).

(i) If A1(0) ⊂ B1(0) and C1(0) ⊂ D1(0), then

QLM =

(
QB1

A2 QB1
B2

QD1
C2 QD1

D2

)
.

(ii) If B1(0) ⊂ A1(0) and C1(0) ⊂ D1(0), then

QLM =

(
QA1A2 QA1B2

QD1
C2 QD1

D2

)
.

(iii) If B1(0) ⊂ A1(0) and D1(0) ⊂ C1(0), then

QLM =

(
QA1A2 QA1B2

QC1
C2 QC1

D2

)
.

Theorem 4.1. Let us define the block matrix linear relation:

T :=

(
A 0
0 D

)
and S :=

(
0 B
C 0

)
.

If A, B, C and D are four bounded linear relations that satisfy:

(i) ‖Af‖2 ≤ a2‖f‖2 and ‖Cf‖2 ≤ c2‖f‖2 for all f ∈ D(A) ∩ D(C),
(ii) ‖Bg‖2 ≤ b2‖g‖2 and ‖Dg‖2 ≤ d2‖g‖2 for all g ∈ D(B) ∩ D(D), where

δ = max(a+ c, b+ d) < 1
2 .

Then, L is demicompact.

Proof. Let zt = (f, g)t ∈
(
D(A) ∩ D(C)

)
⊕
(
D(B) ∩ D(D)

)
. Then

‖Lz‖2 = ‖T z + Sz‖2

≤ 2‖T z‖2 + 2‖Sz‖2

= 2‖QT T z‖2 + 2‖QSSz‖2

= 2‖QAAf‖2 + 2‖QBBg‖2 + 2‖QCCf‖2 + 2‖QDDg‖2

= 2‖Af‖2 + 2‖Bg‖2 + 2‖Cf‖2 + 2‖Dg‖2

≤ 2a2‖f‖2 + 2b2‖g‖2 + 2c2‖f‖2 + 2d2‖g‖2

= 2(a2 + c2)‖f‖2 + 2(b2 + d2)‖g‖2

≤ 2δ(‖f‖2 + ‖g‖2)

< (‖f‖2 + ‖g‖2)

= ‖z‖2.

So, applying Proposition 3.2, we get L which is demicompact. �
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Theorem 4.2. Let A, B, C and D be four closable linear relations and let us
define the block matrix linear relation as follows:

T :=

(
A 0
0 D

)
and S :=

(
0 B
C 0

)
.

The block matrix linear relation L is demicompact if one of the following con-
ditions holds:

(i) L is diagonally dominant of order ε and δ, A and D are closed, B(0) ⊂
A(0), C(0) ⊂ D(0), ‖Af‖2 ≤ a2‖f‖2 for all f ∈ D(A), ‖Dg‖2 ≤
d2‖g‖2 for all g ∈ D(D), and α := max(a+εC+δAa, d+εB+δDd) < 1

2 .
(ii) If L is off-diagonally dominant of order ε and δ < 1, B and C are

closed, A(0) ⊂ B(0), D(0) ⊂ C(0), ‖Cf‖2 ≤ c2‖f‖2 for all f ∈ D(C),
‖Bg‖2 ≤ b2‖g‖2 for all g ∈ D(B), and α := max(c+ εA+ δCc, b+ εD +
δBb) <

1
2 .

Proof. We prove (i), and the proof of (ii) is similar. By Lemmas 4.1 and 4.2,
we get the block matrix linear relation L that is closed.

Let zt = (f, g)t ∈
(
D(A) ∩ D(C)

)
⊕
(
D(B) ∩ D(D)

)
. Then

‖Lz‖2 = ‖T z + Sz‖2

≤ 2‖T z‖2 + 2‖Sz‖2

= 2‖QT T z‖2 + 2‖QSSz‖2

= 2‖QAAf‖2 + 2‖QBBg‖2 + 2‖QCCf‖2 + 2‖QDDg‖2

= 2‖Af‖2 + 2‖Bg‖2 + 2‖Cf‖2 + 2‖Dg‖2

≤ 2‖Af‖2 + 2εB‖g‖2 + 2δD‖Dg‖2 + 2εC‖f‖2 + 2δA‖Af‖2 + 2‖Dg‖2

≤ (2 + 2δA)‖Af‖2 + (2 + 2δD)‖Dg‖2 + 2εC‖f‖2 + 2εB‖g‖2

≤ (2 + 2δA)a‖f‖2 + (2 + 2δD)d‖g‖2 + 2εC‖f‖2 + 2εB‖g‖2

≤ 2(a+ δAa+ εC)‖f‖2 + 2(d+ δDd+ εB)‖g‖2

≤ 2α(‖f‖2 + ‖g‖2)

< (‖f‖2 + ‖g‖2)

= ‖z‖2.

So, applying Proposition 3.2, we get L that is demicompact. �

5. Schechter essential spectra of linear relations

In this section, we present the Schechter essential spectrum definition on
relatively demicompact linear relations. The main results of this section are
Theorems 5.1, 5.2 and 5.3.
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Definition 5.1 ([2, Definition, 4.1]). LetX be a Banach space and T ∈ CR(X).
The resolvent set of T is defined by

ρ(T ) :=

{
λ ∈ C : (λ− T )−1 is everywhere defined, and single valued

}
.

The spectrum of T is σ(T ) := C \ ρ(T ).

In this research paper, we concern with the following essential spectrum:

σe(T ) :=
⋂

K∈KT (X)

σ(T +K),

where KT (X) := {K ∈ KR(X) : D(T ) ⊂ D(K),K(0) ⊂ T (0)}.
We define these sets in terms of,

ΘT,S(X) :=
{
K ∈ LRB(X) such that ∀ λ ∈ ρ(T +K) and K(0) ⊆ T (0),

− (λ− T −K)−1K ∈ DCS(X)
}
,

ΓT,S(X) :=
{
K is T -bounded such that ∀ λ ∈ ρ(T +K) and K(0) ⊆ T (0),

−K(λ− T −K)−1 ∈ DCS(X)
}
.

We denote

σr(T ) =
⋂

K∈ΘT,S(X)

σ(T +K)

and

σl(T ) =
⋂

K∈ΓT,S(X)

σ(T +K).

The following theorem is the main result of this section:

Theorem 5.1. Let T, S ∈ CR(X) with S(0) ⊆ T (0), D(T ) ⊆ D(S) and QT (S−
I) is compact. Then

σe(T ) = σr(T ) = σl(T ).

Proof. Let λ /∈ σr(T ) (resp. λ /∈ σl(T )), then there exists K ∈ ΘT,S(X) (resp.
K ∈ ΓT,S(X)) such that −(λ − T − K)−1K ∈ DCS(X) (resp. −K(λ − T −
K)−1 ∈ DCS(X)) where λ ∈ ρ(T +K). Applying Lemma 3.4, we obtain −(λ−
T −K)−1KGS is demicompact (resp. −K(λ− T −K)−1GS is demicompact)
where λ ∈ ρ(T +K). Hence, applying Theorem 3.1, we get

[I + (λ− T −K)−1KGS ] ∈ Φ(X) and i[I + (λ− T −K)−1KGS ] = 0.

(resp. [I +K(λ− T −K)−1GS ] ∈ Φ(X) and i[I +K(λ− T −K)−1GS ] = 0).

Moreover, we have

λ− T = (λ− T −K)[I + (λ− T −K)−1KGS ]

(resp. λ− T = [I +K(λ− T −K)−1GS ](λ− T −K).)
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Then, by Proposition 2.2, one gets

(λ− T ) ∈ Φ(X) and i(λ− T ) = 0.

So, λ /∈ σe(T ).
Conversely, since KR(X) ⊆ ΘT,S(X) (resp. KR(X) ⊆ ΓT,S(X)), we infer

that σr(T ) ⊆ σe(T ) (resp. σl(T ) ⊆ σe(T )). �

Theorem 5.2. Define the block matrix of linear relation:

L =

(
A1 B1

C1 D1

)
, M =

(
A2 B2

C2 D2

)
,

T =

(
A1 0
0 D1

)
and S =

(
0 B1

C1 0

)
.

Let L and M be diagonally dominant of the order < 1, A1, A2, D1 and D2

be closed, B1(0) ⊂ A1(0), C1(0) ⊂ D1(0), M(0) ⊆ L(0), D(L) ⊆ D(M) and
QL(M− I) is compact.
If G(S) ⊂ G(T ) and dimD(S) =∞, then

σl(L) = σr(L) ⊆ σr(A1) ∪ σr(D1) = σl(A1) ∪ σl(D1).

If in addition, dimS(0) <∞, then we have

σl(L) = σr(L) ⊆ σr(A1) = σr(D1) = σl(A1) = σl(D1).

Proof. By Lemma 4.1, we prove that L and M are two closed block matrix
linear relations. Applying [6, Theorem 4.1] and Theroem 5.1, we get the result.

�

Referring to this Theorem 5.2, we infer the next corollary:

Corollary 5.1. Define the block matrix of linear relation:

L =

(
A1 B1

C1 D1

)
, M =

(
A2 B2

C2 D2

)
,

T =

(
A1 0
0 D1

)
and S =

(
0 B1

C1 0

)
.

Let L and M be off-adiagonally dominant of the order < 1, B1, B2, C1 and
C2 be closed, A1(0) ⊂ B1(0), D1(0) ⊂ C1(0), M(0) ⊆ L(0), D(L) ⊆ D(M)
and QL(M− I) is compact.
If G(T ) ⊂ G(S) and dimD(T ) =∞, then

σl(L) = σr(L) ⊆ σr(B1) ∪ σr(C1) = σl(B1) ∪ σl(C1).

If in addition, dimS(0) <∞, then we have

σl(L) = σr(L) ⊆ σr(B1) ∪ σr(C1) = σl(B1 ∪ σl(C1).

Based on Theorem 5.2 in addition to Lemma 4.2, we deduce the next theo-
rem:
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Theorem 5.3. Define the block matrix of linear relation:

L =

(
A1 B1

C1 D1

)
, M =

(
A2 B2

C2 D2

)
,

T =

(
A1 B1

0 D1

)
and S =

(
0 0
C1 0

)
.

Let L and M be diagonally dominant such that the relative bounds δC1
,δC2

and δB1
δB2

of C1, C2, B1 and B2, respectively satisfy δ2
C1

(1 + δ2
B1

) < 1 or

δ2
B1

(1+δ2
C1

) < 1 and δ2
C2

(1+δ2
B2

) < 1 or δ2
B2

(1+δ2
C2

) < 1. Let A1, A2, D1 and
D2 be closed, B1(0) ⊂ A1(0), C1(0) ⊂ D1(0), M(0) ⊆ L(0), D(L) ⊆ D(M)
and QL(M− I) is compact.
If G(S) ⊂ G(T ) and dimD(S) =∞, then

σl(L) = σr(L) ⊆ σr(A1) ∪ σr(D1) = σl(A1) ∪ σl(D1).

If in addition, dimS(0) <∞, then we have

σl(L) = σr(L) ⊆ σr(A1) ∪ σr(D1) = σl(A1) = σl(D1).

Hence, this Theorem 5.3 immediately implies the next Corollary:

Corollary 5.2. Define the block matrix of linear relation:

L =

(
A1 B1

C1 D1

)
, M =

(
A2 B2

C2 D2

)
,

T =

(
A1 B1

0 D1

)
and S =

(
0 0
C1 0

)
.

Let L and M be diagonally dominant such that the relative bounds δD1 ,δD2

and δA1 δA2 of D1, D2, A1 and A2, respectively satisfy δ2
D1

(1 + δ2
A1

) < 1 or

δ2
A1

(1+δ2
D1

) < 1 and δ2
D2

(1+δ2
A2

) < 1 or δ2
A2

(1+δ2
D2

) < 1. Let B1, B2, C1 and
C2 be closed, A1(0) ⊂ B1(0), D1(0) ⊂ C1(0), M(0) ⊆ L(0), D(L) ⊆ D(M)
and QL(M− I) is compact.
If G(T ) ⊂ G(S) and dimD(T ) =∞, then

σl(L) = σr(L) ⊆ σr(S) = σl(S).

If in addition, dimS(0) <∞, then we get

σl(L) = σr(L) = σr(S) = σl(S).
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