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ON A NONLOCAL PROBLEM WITH INDEFINITE WEIGHTS

IN ORLICZ-SOBOLEV SPACE

Mustafa Avci and Nguyen Thanh Chung

Abstract. In this paper, we consider a class of nonlocal problems with

indefinite weights in Orlicz-Sobolev space. Under some suitable condi-
tions on the nonlinearities, we establish some existence results using vari-

ational techniques and Ekeland’s variational principle.

1. Introduction

In this paper, we are interested in the existence of solutions for the following
nonlocal problem with indefinite weights in Orlicz-Sobolev space:

(1.1)


−M

(∫
Ω

(Φ1(|∇u|) + Φ2(|∇u|)) dx
)

div ((a1(|∇u|) + a2(|∇u|))∇u)

= λV1(x)|u|q1(x)−2u− µV2(x)|u|q2(x)−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,

where Ω is a bounded domain in RN (N ≥ 3) with smooth boundary ∂Ω;
λ, µ > 0 are two real parameters; Vi : Ω→ R (i = 1, 2) are two weight functions;
qi : Ω → (1,+∞) are continuous functions; M : R+

0 := [0,+∞) → R+
0 is an

increasing and continuous function; ai : (0,∞)→ R, i = 1, 2, are two functions
satisfying some specific conditions.

Equations of type (1.1) can be particularised to many well-known problems
involving variable exponent. For example, if we let ai(t) = |t|p(x)−2, where
p(x) is a continuous function on Ω with infx∈Ω p(x) > 1, Equation (1.1) turns
into the p(x)-Kirchhoff-type equation. If we additionally consider the case
M(t) = 1, Equation (1.1) becomes the p(x)-Laplace equation, a generalization
of p-Laplace equation given by div(|∇u|p−2∇u) = f(x, u), 1 < p < N . This
kind of equations have been intensively studied by many authors for the past
two decades due to its significant role in many fields of mathematics, such as
in the study of calculus of variations, partial differential equations [1, 20, 21],
but also for their use in a variety of physical and engineering contexts: the
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modeling of electrorheological fluids [35], the analysis of Non-Newtonian fluids
[38], fluid flow in porous media [4], magnetostatics [13], image restoration [11],
and capillarity phenomena [5], see also, e.g., [3, 6, 8, 12, 16, 17, 19, 24, 27, 30, 37]
and references therein. Therefore, Equation (1.1) may represent a variety of
mathematical models corresponding to certain phenomena:
For ϕ(t) := p|t|p−2t;

• Nonlinear elasticity: ϕ(t) =
(
1 + t2

)α − 1, α > 1
2 ,

• Plasticity: ϕ(t) = tα (log (1 + t))
β
, α ≥ 1, β > 0,

• Generalized Newtonian fluids: ϕ(t) =
∫ t

0
s1−α (sinh−1 s

)β
ds,

0 ≤ α ≤ 1, β > 0.

For ϕ(t) = ϕ(x, t) := p(x)|t|p(x)−2t;

• There is a new model for image restoration given in [14]. In this model,
main aim is to recover an image u, from an observed, noisy image u0,
where the two are related by u0 = u + noise. The proposed model
incorporates the strengths of the various types of diffusion arising from
the minimization problem

E(u) =

∫
Ω

[
|∇u|p(x)

+ λ (u− u0)
2
]
dx

for 1 ≤ p (x) ≤ 2, where
∫

Ω
|∇u|p(x)

dx is a regularizing term to remove
the noise and λ ≥ 0.

Motivated by the results on nonhomogeneous problems in Orlicz-Sobolev
spaces introduced in [26, 31, 32, 36] and some of our results on the nonlocal
case for these problems in [7, 15–17, 27], we study the existence of solutions
for problem (1.1) with indefinite weights and multiple parameters. In [31],
Mihailescu et al. considered the following problem:

(1.2)

{
−div ((a1(|∇u|) + a2(|∇u|))∇u) = λ|u|q(x)−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω.

Using variational techniques, the authors established the existence of two
positive constants λ0, λ1 with λ0 ≤ λ1 such that any λ ∈ [λ1,+∞) is an
eigenvalue, while any λ ∈ (0, λ0) is not an eigenvalue of problem (1.2). In
[32], the authors obtained some similar results in the case when sign-changing
potentials are involved. Interested readers are referred to [36], in which the
author studied the existence of solutions for (1.2) with multiple parameters. In
a recent paper [26], Ge has considered the eigenvalue problem:

(1.3)

{
−div (a(|∇u|)∇u) = λV (x)|u|q(x)−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,

where V is an indefinite sign-changing weight and λ is a positive parameter.
Using variational methods, the author proved that any λ > 0 sufficiently small
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is an eigenvalue of problem (1.3). The purpose of this paper is consider prob-
lem (1.1) under suitable conditions on the weights Vi, i = 1, 2 as well as the
parameters λ and µ. As we will see, our results are natural extensions from the
papers mentioned above. We believe that the obtained results are new even
in the local case M(t) ≡ 1, see [36]. Finally, it should be noticed that the
Kirchhoff function here is allowed to be degenerate at zero which makes some
difficulties in applying variational methods, we refer to [15–17, 23] for more
details.

2. Preliminaries

In order to study problem (1.1), let us introduce the functional spaces where
it will be discussed. We will give just a brief review of some basic concepts and
facts of the theory of Orlicz and Orlicz-Sobolev spaces, useful for what follows,
for more details we refer the readers to the monographs [2, 33, 34], and the
papers [7, 9, 10,18,28,31].

Assume that ai : (0,∞) → R, i = 1, 2, are two functions such that the odd
mappings ϕi : R→ R, defined by

ϕi(t) :=

{
ai(|t|)t for t 6= 0,

0 for t = 0,

are odd, increasing homeomorphisms from R onto R. For the functions ϕi
above, let us define

Φi(t) =

∫ t

0

ϕi(s)ds for all t ∈ R, i = 1, 2,

on which will be imposed some suitable conditions later.
For ϕi and Φi defined above, we can see that Φi are Young functions, that

is, Φi(0) = 0, Φi are convex, and limt→∞Φi(t) = +∞. Furthermore, since

Φi(t) = 0 if and only if t = 0, limt→0
Φi(t)
t = 0, and limt→∞

Φi(t)
t = +∞, the

functions Φi, i = 1, 2, are then called N -functions. Let us define the function
Φ∗i by the formula

Φ∗i (t) =

∫ t

0

ϕ−1
i (s)ds for all t ∈ R, i = 1, 2,

which are called the complementary functions of Φi and they satisfy

Φ∗i (t) = sup{st− Φi(s) : s ≥ 0} for all t ≥ 0, i = 1, 2.

We observe that the functions Φ∗i are also N -functions in the sense above
and the following Young inequality holds

st ≤ Φi(s) + Φ∗i (t) for all s, t ≥ 0, i = 1, 2.

The Orlicz classes defined by the N -functions Φi, i = 1, 2, are the sets

KΦi(Ω) :=

{
u : Ω→ R is measurable :

∫
Ω

Φi(|u(x)|) dx <∞
}
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and the Orlicz spaces LΦi(Ω) are then defined as the linear hulls of the sets
KΦi(Ω). The spaces LΦi(Ω) are Banach spaces under the following Luxemburg
norms

‖u‖Φi := inf

{
k > 0 :

∫
Ω

Φi

(
u(x)

k

)
dx ≤ 1

}
or the equivalent Orlicz norms

‖u‖LΦi
:= sup

{∣∣∣∣∫
Ω

u(x)v(x) dx

∣∣∣∣ : v ∈ KΦ∗i
(Ω),

∫
Ω

Φ∗i (|v(x)|) dx ≤ 1

}
,

respectively. For Orlicz spaces, the Hölder inequality reads as follows (see [34]):∫
Ω

uv dx ≤ 2‖u‖LΦi
‖u‖LΦ∗

i
for all u ∈ LΦi and v ∈ LΦ∗i

.

The Orlicz-Sobolev spaces W 1LΦi building upon LΦi(Ω) are the spaces defined
by

W 1LΦi(Ω) :=

{
u ∈ LΦi(Ω) :

∂u

∂xl
∈ LΦi(Ω), l = 1, 2, . . . , N

}
and they are Banach spaces with respect to the norm

‖u‖1,Φi := ‖u‖Φi + ‖|∇u|‖Φi .
Now, we introduce the Orlicz-Sobolev spaces W 1

0LΦi(Ω) as the closure of
C∞0 (Ω) in W 1LΦi(Ω). It turns out that the spaces W 1

0LΦi(Ω), i = 1, 2, can be
renormed by using as an equivalent norms

‖u‖i := ‖|∇u|‖Φi .
Throughout this paper, we assume that Φi and Φ∗i satisfy the ∆2-conditions
at infinity, i = 1, 2, namely,

(2.1) 1 < (ϕi)0 := inf
t>0

tϕi(t)

Φi(t)
≤ (ϕi)

0 := sup
t>0

tϕi(t)

Φi(t)
<∞, t ≥ 0.

Furthermore, we also need the following conditions

(2.2) the function t 7→ Φi(
√
t) are convex for all t ∈ [0,∞), i = 1, 2,

and

(2.3) lim
t→0

∫ 1

t

(Φi)
−1(s)

s
N+1
N

ds < +∞ and lim
t→+∞

∫ t

1

(Φi)
−1(s)

s
N+1
N

ds = +∞

which help us to define the Orlicz-Sobolev conjugates (Φi)∗ of Φi, i = 1, 2,
which are given by the formula

(2.4) (Φi)
−1
∗ (t) =

∫ t

0

(Φi)
−1(s)

s
N+1
N

ds.

We notice that Orlicz-Sobolev spaces, unlike the Sobolev spaces they gen-
eralize, are in general neither separable nor reflexive. A key tool to guarantee
these properties is represented by the ∆2-condition (2.1). Actually, condition
(2.1) assures that both LΦi(Ω) andW 1

0LΦi(Ω) are separable, see [2]. Conditions
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(2.1) and (2.2) assure that LΦi(Ω) are uniformly convex spaces and thus, reflex-
ive Banach spaces (see [31]); consequently, the Orlicz-Sobolev spaces W 1

0LΦi(Ω)
are also reflexive Banach spaces.

Proposition 2.1 (see [18,31]). Let u ∈W 1
0LΦi(Ω), i = 1, 2. Then we have

(i) ‖u‖(ϕi)
0

i ≤
∫

Ω
Φi(|∇u(x)|) dx ≤ ‖u‖(ϕi)0

i if ‖u‖i < 1.

(ii) ‖u‖(ϕi)0

i ≤
∫

Ω
Φi(|∇u(x)|) dx ≤ ‖u‖(ϕi)

0

i if ‖u‖i > 1.

Next, we recall in what follows some definitions and basic properties of the
generalized Lebesgue space Lp(x) (Ω) where Ω is an open subset of RN . In that
context, we refer to the books [21,35], the paper of Kováčik et al. [29].
Set

C+(Ω) := {h; h ∈ C(Ω), h(x) > 1 for all x ∈ Ω}.
It is said that h(x) ∈ L∞+ (Ω) when

1 < h− = ess inf
x∈Ω

h(x) and h+ = ess sup
x∈Ω

h(x) <∞.

For any p(x) ∈ C+(Ω), we define the variable exponent Lebesgue space

Lp(x)(Ω) =

{
u : a measurable real-valued function such that

∫
Ω

|u(x)|p(x) dx <∞
}

with respect to the following so-called Luxemburg norm defined by the formula

|u|p(x) = inf

{
µ > 0;

∫
Ω

∣∣∣∣u(x)

µ

∣∣∣∣p(x)

dx ≤ 1

}
.

Variable exponent Lebesgue spaces resemble classical Lebesgue spaces in
many respects: they are Banach spaces, the Hölder inequality holds, they are
reflexive if and only if 1 < p− ≤ p+ < ∞ and continuous functions are dense
if p+ < ∞. The inclusion between Lebesgue spaces also generalizes naturally:
if 0 < |Ω| < ∞ and p1, p2 are variable exponents so that p1(x) ≤ p2(x) a.e.
x ∈ Ω, then there exists the continuous embedding Lp2(x)(Ω) ↪→ Lp1(x)(Ω). We

denote by Lp
′(x)(Ω) the conjugate space of Lp(x)(Ω), where 1

p(x) + 1
p′(x) = 1.

For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω) the Hölder inequality

(2.5)

∣∣∣∣∫
Ω

uv dx

∣∣∣∣ ≤ ( 1

p−
+

1

(p′)−

)
|u|p(x)|v|p′(x) ≤ 2|u|p(x)|v|p′(x)

holds true.
An important role in manipulating the generalized Lebesgue-Sobolev spaces

is played by the modular of the Lp(x)(Ω) space, which is the mapping ρp(x) :

Lp(x)(Ω)→ R defined by

ρp(x)(u) =

∫
Ω

|u|p(x) dx.
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If u ∈ Lp(x)(Ω) and p+ <∞, then the following relations hold

(2.6) |u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|p
+

p(x)

provided |u|p(x) > 1 while

(2.7) |u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x)

provided |u|p(x) < 1 and

(2.8) |un − u|p(x) → 0 ⇔ ρp(x)(un − u)→ 0.

Proposition 2.2. Let p(x) and q(x) be measurable functions such that p ∈
L∞(Ω) and 1 ≤ p(x)q(x) ≤ +∞ for a.e. x ∈ Ω. Let u ∈ Lq(x)(Ω) and u 6= 0.
Then we have

|u|p(x)q(x) ≤ 1⇒ |u|p
+

p(x)q(x) ≤ ||u|
p(x)|q(x) ≤ |u|p

−

p(x)q(x),

|u|p(x)q(x) ≥ 1⇒ |u|p
−

p(x)q(x) ≤ ||u|
p(x)|q(x) ≤ |u|p

+

p(x)q(x).

In particular, if p(x) = p is a constant, then ||u|p|q(x) = |u|ppq(x).

3. Main results

In this section, we will state and prove our main results. The solutions of
problem (1.1) will be found in the space X = W 1

0LΦ1
(Ω). Throughout this

paper, we denote by ci general positive number whose value may change from
place to place.

Let M : R+
0 → R+

0 be an increasing and continuous function. Assume that

the functions qi, si ∈ L∞+ (Ω)∩C+(Ω), i= 1, 2. Set qmax(x) := max{q1(x), q2(x)}
and smin(x) := min{s1(x), s2(x)}, x ∈ Ω and let us introduce the following
conditions:

(M0) m1t
α−1 ≤M(t) ≤ m2t

α−1, ∀t ≥ 0, m2 ≥ m1 > 0, α > 1.
(H1) 1 < qmax(x) < α(ϕ2)0 ≤ α(ϕ2)0 < α(ϕ1)0 ≤ α(ϕ1)0 < smin(x) for all

x ∈ Ω;

(H2) limt→+∞
|t|

s
−
min

q+max

s
−
min
−αq+max

(Φ2)∗(kt)
= 0 for all k > 0;

(H3) Vi ∈ L
si(x)

α (Ω), i = 1, 2, and there exists a measurable set Ω0 ⊂⊂ Ω of
positive measure such that V1(x) > 0 for all x ∈ Ω0, and V2(x) ≥ 0 for
all x ∈ Ω;

(H4) infx∈Ω0
q1(x) < min

{
α(ϕ2)0, infx∈Ω0

q2(x)
}

.

Remark 3.1. Assume that q1(x), q2(x), s1(x), s2(x) ∈ L∞+ (Ω) ∩ C+(Ω). From
(H1) and (2.3), (2.4), it is clear that for all u ∈ X,∣∣∣∣∫

Ω

Vi(x)

qi(x)
|u|qi(x) dx

∣∣∣∣ ≤ 1

q−i
|V | si(x)

α

||u|qi(x)| si(x)

si(x)−α
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=


1
q−i
|V | si(x)

α

|u|q
−
i
si(x)qi(x)

si(x)−α
if |u| si(x)qi(x)

si(x)−α
≤ 1,

1
q−i
|V | si(x)

α

|u|q
+
i
si(x)qi(x)

si(x)−α
if |u| si(x)qi(x)

si(x)−α
≥ 1, i = 1, 2.

We set hi(x) = si(x)qi(x)
si(x)−α and gi(x) = si(x)qi(x)

si(x)−αqi(x) , then hi(x) < gi(x) for all

x ∈ Ω. By the condition (H1), it follows that the embedding X = W 1
0LΦ1

(Ω) ↪→
W 1

0LΦ2
(Ω) is continuous. Moreover, by the condition (H2) and the fact that

s−minq
+
max

s−min−α
<

s−minq
+
max

s−min−αq
+
max

, the embeddings W 1
0LΦ2(Ω) ↪→ L

s
−
min

q+max

s
−
min
−α (Ω) and

W 1
0LΦ2(Ω) ↪→↪→ L

s
−
min

q+max

s
−
min
−αq+max (Ω) are continuous and compact. As a result, we

deduce that the embeddings X ↪→↪→ L

s
−
min

q+max

s
−
min
−α (Ω) and X ↪→↪→ L

s
−
min

q+max

s
−
min
−αq+max (Ω)

are continuous and compact. On the other hand, we have hi(x) < gi(x) <
s−minq

+
max

s−min−αq
+
max

for all x ∈ Ω, i = 1, 2. Therefore, the embeddings X ↪→↪→ Lhi(x)(Ω)

and X ↪→↪→ Lgi(x)(Ω) are continuous and compact.

Definition 3.2. We say that u ∈ X is a weak solution of problem (1.1) if it
holds that

M

(∫
Ω

(Φ1(|∇u|) + Φ2(|∇u|)) dx
)∫

Ω

(a1(|∇u|) + a2(|∇u|))∇u · ∇v dx

−λ
∫

Ω

V1(x)|u|q1(x)−2uv dx+ µ

∫
Ω

V2(x)|u|q2(x)−2uv dx = 0

for all v ∈ X.

For each λ ∈ R and µ ∈ R, let us consider the functional Jλ,µ : X → R
associated to problem (1.1) as follows

Jλ,µ(u) = M̂

(∫
Ω

(Φ1(|∇u|) + Φ2(|∇u|)) dx
)
− λ

∫
Ω

V1(x)

q1(x)
|u|q1(x) dx

+ µ

∫
Ω

V2(x)

q2(x)
|u|q2(x) dx,

we then, by applying standard arguments, get Jλ,µ ∈ C1(X,R) and its deriva-
tive is

J ′λ,µ(u)(v)

= M

(∫
Ω

(Φ1(|∇u|) + Φ2(|∇u|)) dx
)∫

Ω

(a1(|∇u|) + a2(|∇u|))∇u · ∇v dx

− λ
∫

Ω

V1(x)|u|q1(x)−2uv dx+ µ

∫
Ω

V2(x)|u|q2(x)−2uv dx

for all u, v ∈ X. Hence, weak solutions of (1.1) are exactly the critical points
of Jλ,µ and they will be found in X by using variational methods.

The main results of the present paper are the following:
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Theorem 3.3. Assume that the conditions (M0) and (H1)-(H3) hold. Then,
for all µ > 0, there exists λ > 0 such that for any λ ∈ [λ,+∞), that is, when
λ is large enough, problem (1.1) has at least one nontrivial weak solution.

Theorem 3.4. Assume that the conditions (M0) and (H1)-(H4) hold. Then,
for all µ > 0, there exists λ such that for all λ ∈ (0, λ), that is, when λ is small
enough, problem (1.1) has at least one non-trivial weak solution with negative
energy.

Now, we give an auxiliary result.

Lemma 3.5. The functional Jλ,µ is coercive on X.

Proof. Let ‖u‖1 > 1. By the conditions (H1)-(H2) and Remark 3.1, there exists
c1 > 0 such that

(3.1) |u|hi(x) ≤ c1‖u‖1, ∀u ∈ X,

where hi(x) = si(x)qi(x)
si(x)−α , i = 1, 2. Hence, by the condition (M0), the Hölder

inequality, Proposition 2.1, we deduce that

Jλ,µ(u) = M̂

(∫
Ω

(Φ1(|∇u|) + Φ2(|∇u|)) dx
)
− λ

∫
Ω

V1(x)

q1(x)
|u|q1(x) dx

+ µ

∫
Ω

V2(x)

q2(x)
|u|q2(x) dx

≥ m1

α

(∫
Ω

(Φ1(|∇u|) + Φ2(|∇u|)) dx
)α
− 2λ

q−1
|V1| s1(x)

α

||u|q1(x)| s1(x)

s1(x)−α

≥ m1

α
‖u‖α(ϕ1)0

1 − 2λ

q−1
|V1| s1(x)

α

min
{
|u|q

−
1

h1(x), |u|
q+
1

h1(x)

}
≥ m1

α
‖u‖α(ϕ1)0

1 − 2λ

q−1
|V1| s1(x)

α

min
{
c
q−1
1 ‖u‖

q−1
1 , c

q+
1

1 ‖u‖
q+
1

1

}
.

Since q+
1 ≤ q+

max < α(ϕ2)0 < α(ϕ1)0, we infer that Jλ,µ(u) → +∞ as ‖u‖1 →
+∞, which means that the functional Jλ,µ is coercive on X. �

Proof of Theorem 3.3. Set

(3.2) Θ(u) =

∫
Ω

(Φ1(|∇u|) + Φ2(|∇u|)) dx

and

Υ(u) = −λ
∫

Ω

V1(x)

q1(x)
|u|q1(x) dx+ µ

∫
Ω

V2(x)

q2(x)
|u|q2(x) dx.

Then

Jλ,µ = M̂(Θ) + Υ.

Let {un} ⊂ X be a sequence such that un ⇀ u ∈ X. Notice that due to the
growth condition (ϕ2)0 < (ϕ1)0 (see (H1)), we have the continuous embedding
X ↪→ W 1

0LΦ2
(Ω) (see Remark 3.1) which means that un ⇀ u ∈ W 1

0LΦ2
(Ω).
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On the other hand, since Φi are convex, the functional Θ(u) is weakly lower
semi-continuous, namely

(3.3) Θ(u) ≤ lim inf
n→∞

Θ(un).

If we consider (M0), which means that M̂ is a continuous and monotone func-
tion, along with (3.3), it reads

(3.4) lim inf
n→∞

M̂(Θ(un)) = M̂
(

lim inf
n→∞

Θ(un

)
≥ M̂(Θ(u).

From (H2), it holds that limt→+∞
|t|q

+
max

(Φ2)∗(kt)
= 0 for all k > 0. If we consider

this fact along with (2.3), we obtain that W 1
0LΦ2

(Ω) is embedded compactly in

Lq
+
max(Ω) (see [25]). It is well known that Lq

+
max(Ω) is embedded continuously

in Lq1(x)(Ω) and Lq2(x)(Ω). As a result, by the continuous embedding X ↪→
W 1

0LΦ2(Ω), we have the following compact embeddings

X ↪→↪→ Lq1(x)(Ω)

and
W 1

0LΦ2
(Ω) ↪→↪→ Lq2(x)(Ω).

On the other hand, by Remark 3.1, we have the compact embedding

W 1
0LΦ2

(Ω) ↪→↪→ Lhi(x)(Ω).

Then, applying the Young’s inequality to Vi(x)
qi(x) |un(x)|qi(x) for the conjugate

exponents δ(x) = si(x)
α and δ(x)∗ = si(x)

si(x)−α , and considering Remark 3.1 once
more we get∣∣∣∣Vi(x)

qi(x)
|un(x)|qi(x)

∣∣∣∣ ≤ 1

qi(x)

(
1

δ(x)
|Vi(x)|δ(x) +

1

δ(x)∗
||un(x)|qi(x)|δ(x)∗

)
≤ K(x) ∈ L1(Ω)(3.5)

for all x ∈ Ω and n ∈ N, i = 1, 2. Therefore, by the Lebesgue convergence
theorem, up to a subsequence still denoted by (un), we have

lim
n→∞

∫
Ω

V1(x)

q1(x)
|un|q1(x)dx =

∫
Ω

V1(x)

q1(x)
|u|q1(x)dx,

lim
n→∞

∫
Ω

V2(x)

q2(x)
|un|q2(x)dx =

∫
Ω

V2(x)

q2(x)
|u|q2(x)dx,

that is,

(3.6) Υ(u) = lim
n→∞

Υ(un).

From (3.4) and (3.6), we conclude that

(3.7) Jλ,µ ≤ lim inf
n→∞

Jλ,µ(un),

that is, functional Jλ,µ is weakly lower semi-continuous on X. By Lemma 3.5,
Jλ,µ is coercive, so it has a global minimum point uλ,µ ∈ X, which in turn
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becomes a weak solution of problem (1.1). Next, we show that uλ,µ is not
trivial. Let t0 > 1 be a fixed real number, and let u∗ ∈ C∞0 (Ω) such that
u∗(x) = t0 in Ω1 and 0 ≤ u∗(x) ≤ t0 in Ω \ Ω1, where Ω1 is an open subset of
Ω such that Ω1 ⊆ Ω0. Therefore, it reads

Jλ,µ(u∗) = M̂

(∫
Ω

(Φ1(|∇u∗|) + Φ2(|∇u∗|)) dx
)
− λ

∫
Ω

V1(x)

q1(x)
|u∗|q1(x) dx

+ µ

∫
Ω

V2(x)

q2(x)
|u∗|q2(x) dx

≤ m2

α

(∫
Ω

(Φ1(|∇u∗|) + Φ2(|∇u∗|)) dx
)α
− λ

∫
Ω1

V1(x)

q1(x)
|u∗|q1(x) dx

+
µc2

q−2

≤ c3m2

α
− λt

q+
1

0 c4

q+
1

+
µc1

q−2
≤ c5 −

λt
q+
1

0 c4

q+
1

.

Thus, Jλ,µ(u∗) < 0 provided λ is large enough, that is, there exists λ > 0 such

that for any λ ∈ [λ,+∞), Jλ,µ(uλ,µ) < 0, and hence, uλ,µ is not trivial. �

In the rest of the paper, we will prove Theorem 3.4 by using variational
techniques and Ekeland’s variational principle. We first have to obtain the
following result.

Lemma 3.6. Assume that the conditions (M0) and (H1)-(H3) hold. Then for
all ρ ∈ (0, 1) there exist λ > 0 and a constant a > 0 such that for all u ∈ X
with ‖u‖1 = ρ we have Jλ,µ(u) ≥ a for any λ ∈ (0, λ).

Proof. Let us assume that ‖u‖1 < min
{

1, 1
c1

}
, where c1 is given by (3.1). It

follows that |u|hi(x) < 1, where hi(x) = si(x)qi(x)
si(x)−α , i = 1, 2. Using relations

(2.1), (3.1), the condition (M0) and Remark 3.1, we deduce that for any u ∈ X
with ‖u‖1 = ρ ∈ (0, 1) the following inequalities hold true

Jλ,µ(u) = M̂

(∫
Ω

(Φ1(|∇u|) + Φ2(|∇u|)) dx
)
− λ

∫
Ω

V1(x)

q1(x)
|u|q1(x) dx

+ µ

∫
Ω

V2(x)

q2(x)
|u|q2(x) dx

≥ m1

α

(∫
Ω

(Φ1(|∇u|) + Φ2(|∇u|)) dx
)α
− λ

∫
Ω

V1(x)

q1(x)
|u|q1(x) dx

≥ m1

α
‖u‖α(ϕ1)0

1 − 2λ

q−1
|V1| s1(x)

α

||u|q1(x)| s1(x)

s1(x)−α

≥ m1

α
‖u‖α(ϕ1)0

1 − 2λ

q−1
|V1| s1(x)

α

|u|q
−
1

h1(x)
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≥ m1

α
‖u‖α(ϕ1)0

1 − 2λ

q−1
|V1| s1(x)

α

c
q−1
1 ‖u‖

q−1
1

= ρq
−
1

(
m1

α
ρα(ϕ1)0−q−1 − 2λ

q−1
c
q−1
1 |V1| s1(x)

α

)
.

This inequality shows that if we choose

(3.8) λ =
m1q

−
1

4αc
q−1
1 |V1| s1(x)

α

ρα(ϕ1)0−q−1 ,

then for all λ ∈ (0, λ) and for all u ∈ X with ‖u‖1 = ρ, there exists a > 0 such
that Jλ,µ(u) ≥ a > 0. The proof of Lemma 3.6 is complete. �

Lemma 3.7. Assume that the conditions (M0) and (H1)-(H4) hold. Then,
there exists u0 ∈ X such that u0 ≥ 0, u0 6= 0 and Jλ,µ(tu0) < 0 for all t > 0
small enough.

Proof. Set qi,0 := infx∈Ω0
qi(x), i = 1, 2 and θ0 := min{α(ϕ2)0, q2,0}. Since

q−1,0 < θ0, let ε0 > 0 be such that q−1,0 + ε0 < θ0. Since q1 ∈ C(Ω0), there

exists an open set Ω2 ⊂⊂ Ω0 such that |q1(x)− θ0| < ε0 for all x ∈ Ω2. Thus,
q1(x) ≤ q−1,0 + ε0 < θ0 for all x ∈ Ω2.

Let u0 ∈ C∞0 (Ω0) be such that supp(u0) ⊂ Ω2 ⊂⊂ Ω0, u0 = 1 in a sub-
set Ω′2 ⊂ supp(u0), 0 ≤ u0 ≤ 1 in Ω2. Therefore, applying the well-known
inequality

(s+ t)γ ≤ 2γ−1(sγ + tγ), ∀s, t ≥ 0, γ ≥ 1,

for any t ∈ (0, 1) we have

Jλ,µ(tu0) = M̂

(∫
Ω

(Φ1(|∇tu0|) + Φ2(|∇tu0|)) dx
)

− λ
∫

Ω

tq1(x)

q1(x)
V1(x)|tu0|q1(x) dx+ µ

∫
Ω

tq2(x)

q2(x)
V2(x)|tu0|q2(x) dx

≤ m2

α

(∫
Ω

(Φ1(|∇tu0|) + Φ2(|∇tu0|)) dx
)α

− λ
∫

Ω2

tq1(x)

q1(x)
V1(x)|u0|q1(x) dx+ µ

∫
Ω0

tq2(x)

q2(x)
V2(x)|u0|q2(x) dx

≤ m22α−1

α

[(∫
Ω

Φ1(|∇tu0|) dx
)α

+

(∫
Ω

Φ2(|∇tu0|) dx
)α]

− λtq
−
1,0+ε0

q−1,0

∫
Ω2

V1(x)|u0|q1(x) dx+
µtq
−
2,0

q−2,0

∫
Ω0

V2(x)|u0|q2(x) dx

≤ m22α−1

α

[
tα(ϕ1)0‖u0‖α(ϕ2)0

1 + tα(ϕ2)0‖u0‖α(ϕ2)0

2

]
− λtq

−
1,0+ε0

q−1,0

∫
Ω2

V1(x)|u0|q1(x) dx+
µtq
−
2,0

q−2,0

∫
Ω0

V2(x)|u0|q2(x) dx
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≤ tθ0

[
m22α−1

α

(
‖u0‖α(ϕ1)0

1 +‖u0‖α(ϕ2)0

2

)
+

µ

q−2,0

∫
Ω0

V2(x)|u0|q2(x) dx

]

− λtq
−
1,0+ε0

q−1,0

∫
Ω2

V1(x)|u0|q1(x) dx.(3.9)

It follows from relation (3.9) that Jλ,µ(tu0) < 0 for all 0 < t < δ
1

θ0−q
−
1,0−ε0 with

0 < δ < min{1, δ0} and

δ0 :=
λ
∫

Ω2
V1(x)|u0|q1(x) dx

q+
1,0

[
m22α−1

α

(
‖u0‖α(ϕ1)0

1 + ‖u0‖α(ϕ2)0

2

)
+ µ

q−2,0

∫
Ω0
V2(x)|u0|q2(x) dx

] .
Finally, we point out that

m22α−1

α

(
‖u0‖α(ϕ1)0

1 + ‖u0‖α(ϕ2)0

2

)
+

µ

q−2,0

∫
Ω0

V2(x)|u0|q2(x) dx > 0.

In fact, if it is not true, then

‖u0‖1 = ‖u0‖2 =

∫
Ω0

V2(x)|u0|q2(x) dx = 0,

hence u0 = 0 in Ω0. This is a contradiction and thus the proof of Lemma 3.6
is now complete. �

Proof of Theorem 3.4. Let λ > 0 be defined as in (3.3) and let λ ∈ (0, λ) and
µ > 0. By Lemma 3.6, we have

(3.10) inf
∂Bρ(0)

Jλ,µ > 0,

where Bρ(0) is the boundary of the ball centered at the origin and of radius ρ
in X.

On the other hand, by Lemma 3.6, there exists u0 ∈ X such that Jλ,µ(tu0) <
0 for all t > 0 small enough. Moreover, by hypothesis (M0) and the proof of
Lemma 3.6 we deduce that for any u ∈ Bρ(0),

Jλ,µ(u) ≥ m1

α
‖u‖α(ϕ1)0

1 − 2λ

q−1
|V1| s1(x)

α

c
q−1
1 ‖u‖

q−1
1 .

It follows that
−∞ < c := inf

Bρ(0)
Jλ,µ < 0.

Let 0 < ε < inf∂Bρ(0) Jλ,µ − infBρ(0) Jλ,µ. Using the above information,

the functional Jλ,µ : Bρ(0) −→ R, is lower bounded on Bρ(0) and Jλ,µ ∈
C1(Bρ(0),R). Then by Ekeland’s variational principle [22], there exists uε ∈
Bρ(0) such that{

c ≤ Jλ,µ(uε) ≤ c+ ε,
0 < Jλ,µ(u)− Jλ,µ(uε) + ε‖u− uε‖1, u 6= uε.
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Since
Jλ,µ(uε) ≤ inf

Bρ(0)
Jλ,µ + ε ≤ inf

Bρ(0)
Jλ,µ + ε < inf

∂Bρ(0)
Jλ,µ,

we deduce that uε ∈ Bρ(0). Now, we define Jλ,µ : Bρ(0) −→ R by Jλ,µ(u) =

Jλ,µ(u) + ε‖u− uε‖1. It is clear that uε is a minimum point of Jλ,µ and thus

Jλ,µ(uε + t · v)− Jλ,µ(uε)

t
≥ 0

for small t > 0 and any v ∈ B1(0). Hence,

Jλ,µ(uε + t · v)− Jλ,µ(uε)

t
+ ε‖v‖1 ≥ 0.

Letting t → 0 it follows that J ′λ,µ(uε)(v) + ε‖v‖1 ≥ 0 and we infer that

‖J ′λ,µ(uε)‖1 ≤ ε.
From the above information, we deduce that there exists a sequence {un} ⊂

Bρ(0) such that

(3.11) Jλ,µ(un) −→ c < 0 and J ′λ,µ(un) −→ 0X∗ .

It is clear that {un} is bounded in X. Thus, there exists u in X such that,
up to a subsequence, {un} converges weakly to u in X. By Remark 3.1, the
embedding X ↪→↪→ Lgi(x)(Ω) is continuous and compact, hence the sequence
{un} converges strongly to u in Lgi(x)(Ω), i = 1, 2. Using Hölder’s inequality
(2.2) we have∫

Ω

V1(x)|un|q1(x)−2un(un−u) dx ≤ |V1| s1(x)
α

||un|q1(x)−2un(un−u)|h1(x)

≤ 2|V1| s1(x)
α

||un|q1(x)−2un| q1(x)

q1(x)−1

|un−u|g1(x).

Now if ||un|q1(x)−2un| q1(x)

q1(x)−1

> 1, then we get

||un|q1(x)−2un| q1(x)

q1(x)−1

≤ |un|
q+
1

q1(x).

The compact embedding X ↪→↪→ Lq1(x)(Ω) helps us to show that

(3.12) lim
n→∞

∫
Ω

V1(x)|un|q1(x)−2un(un − u) dx = 0.

Similarly, we get

(3.13) lim
n→∞

∫
Ω

V2(x)|un|q2(x)−2un(un − u) dx = 0.

Moreover, by (3.11) we have

lim
n→∞

J ′λ,µ(un)(un − u) = 0

or

M (Θ(un))

∫
Ω

(a1(|∇un|) + a2(|∇un|))∇un · (∇un −∇u) dx
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−λ
∫

Ω

V1(x)|un|q1(x)−2un(un−u) dx+ µ

∫
Ω

V2(x)|un|q2(x)−2un(un−u) dx→ 0.

Combining this with relations (3.12)-(3.13) it follows that

(3.14) M (Θ(un))

∫
Ω

(a1(|∇un|) + a2(|∇un|))∇un · (∇un −∇u) dx→ 0.

If Θ(un)→ 0 as n→∞, then
∫

Ω
Φ1(|∇un|) dx→ 0, it follows from Proposi-

tion 2.1 that un → 0 strongly in X and the proof is finished. If Θ(un)→ t0 > 0,
then for n large enough, we have

M (Θ(un))→M(t0) ≥ m1t
α−1
0 > 0,

so that

lim
n→∞

∫
Ω

(a1(|∇un|) + a2(|∇un|))∇un · (∇un −∇u) dx = 0.

Combining this with similar arguments as those presented in [30, Proposition
4.5] or [18, Page 50], we deduce that {un} converges strongly to u in X. Since
Jλ,µ ∈ C1(X,R), we conclude that

(3.15) J ′λ,µ(un)→ J ′λ,µ(u) as n→∞.

Relations (3.11) and (3.15) show that J ′λ,µ(u) = 0 and thus u is a weak solution

for problem (1.1). Moreover, by relation (3.11), it follows that Jλ,µ(u) < 0 and
thus, u is a nontrivial weak solution for (1.1). The proof of Theorem 3.4 is
complete. �
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