DOI QR코드

DOI QR Code

RIGHT AND LEFT QUOTIENT OF TWO BOUNDED OPERATORS ON HILBERT SPACES

  • Benharrat, Mohammed (Department of Mathematics and informatics National Polytechnic School of Oran-Maurice Audin)
  • 투고 : 2019.03.22
  • 심사 : 2019.09.04
  • 발행 : 2020.04.30

초록

We define a left quotient as well as a right quotient of two bounded operators between Hilbert spaces, and we parametrize these two concepts using the Moore-Penrose inverse. In particular, we show that the adjoint of a left quotient is a right quotient and conversely. An explicit formulae for computing left (resp. right) quotient which correspond to adjoint, sum, and product of given left (resp. right) quotient of two bounded operators are also shown.

과제정보

연구 과제 주관 기관 : PRFU

참고문헌

  1. M. Benharrat and B. Messirdi, Semi-Fredholm operators and pure contractions in Hilbert space, Rend. Circ. Mat. Palermo (2) 62 (2013), no. 2, 267-272. https://doi.org/10.1007/s12215-013-0123-9
  2. M. Benharrat and B. Messirdi, Strong metrizability for closed operators and the semi-Fredholm operators between two Hilbert spaces, Int. J. Anal. Appl. 8 (2015), no. 2, 110-122.
  3. A. Ben-Israel and T. N. E. Greville, Generalized inverses: theory and applications, Second edition, Springer, New York, 2003.
  4. R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-415. https://doi.org/10.2307/2035178
  5. J. Dixmier, Etude sur les varietes et les operateurs de Julia, avec quelques applications, Bull. Soc. Math. France 77 (1949), 11-101.
  6. P. A. Fillmore and J. P. Williams, On operator ranges, Advances in Math. 7 (1971), 254-281. https://doi.org/10.1016/S0001-8708(71)80006-3
  7. A. Gherbi, B. Messirdi, and M. Benharrat, Quotient operators: new generation of linear operators, Funct. Anal. Approx. Comput. 7 (2015), no. 1, 85-93.
  8. G. Hirasawa, Quotients of bounded operators and Kaufman's theorem, Math. J. Toyama Univ. 18 (1995), 215-224.
  9. G. Hirasawa, A symmetric operator and its Kaufman's representation, Period. Math. Hungar. 49 (2004), no. 1, 43-47. https://doi.org/10.1023/B:MAHU.0000040538.77157.56
  10. G. Hirasawa, A topology for semiclosed operators in a Hilbert space, Acta Sci. Math. (Szeged) 73 (2007), no. 1-2, 271-282.
  11. G. Hirasawa, A metric for unbounded linear operators in a Hilbert space, Integral Equations Operator Theory 70 (2011), no. 3, 363-378. https://doi.org/10.1007/s00020-010-1851-2
  12. S. Izumino, Quotients of bounded operators, Proc. Amer. Math. Soc. 106 (1989), no. 2, 427-435. https://doi.org/10.2307/2048823
  13. S. Izumino, Decomposition of quotients of bounded operators with respect to closability and Lebesgue-type decomposition of positive operators, Hokkaido Math. J. 18 (1989), no. 2, 199-209. https://doi.org/10.14492/hokmj/1381517757
  14. S. Izumino, Quotients of bounded operators and their weak adjoints, J. Operator Theory 29 (1993), no. 1, 83-96.
  15. S. Izumino and G. Hirasawa, Positive symmetric quotients and their selfadjoint extensions, Proc. Amer. Math. Soc. 129 (2001), no. 10, 2987-2995. https://doi.org/10.1090/S0002-9939-01-05958-5
  16. T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag New York, Inc., New York, 1966.
  17. W. E. Kaufman, Representing a closed operator as a quotient of continuous operators, Proc. Amer. Math. Soc. 72 (1978), no. 3, 531-534. https://doi.org/10.2307/2042466
  18. W. E. Kaufman, Semiclosed operators in Hilbert space, Proc. Amer. Math. Soc. 76 (1979), no. 1, 67-73. https://doi.org/10.2307/2042919
  19. W. E. Kaufman, Closed operators and pure contractions in Hilbert space, Proc. Amer. Math. Soc. 87 (1983), no. 1, 83-87. https://doi.org/10.2307/2044357
  20. W. E. Kaufman, A stronger metric for closed operators in Hilbert space, Proc. Amer. Math. Soc. 90 (1984), no. 1, 83-87. https://doi.org/10.2307/2044673
  21. F. Kittaneh, On some equivalent metrics for bounded operators on Hilbert space, Proc. Amer. Math. Soc. 110 (1990), no. 3, 789-798. https://doi.org/10.2307/2047922
  22. J. J. Koliha, On Kaufman's theorem, J. Math. Anal. Appl. 411 (2014), no. 2, 688-692. https://doi.org/10.1016/j.jmaa.2013.10.028