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REMARKS ON A THEOREM OF CUPIT-FOUTOU AND

ZAFFRAN
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Abstract. There is a well-known class of compact, complex, non-Kähl-

erian manifolds constructed by Bosio, called the LVMB manifolds, which
properly includes the Hopf manifold, the Calabi-Eckmann manifold, and

the LVM manifolds. As in the case of LVM manifolds, these LVMB
manifolds can admit a regular holomorphic foliation F . Moreover, later

Meersseman showed that if an LVMB manifold is actually an LVM man-

ifold, then the regular holomorphic foliation F is actually transverse
Kähler. The aim of this paper is to deal with a converse question and

to give a simple and new proof of a well-known result of Cupit-Foutou

and Zaffran. That is, we show that, when the holomorphic foliation F on
an LVMB manifold N is transverse Kähler with respect to a basic and

transverse Kähler form and the leaf space N/F is an orbifold, N/F is

projective, and thus N is actually an LVM manifold.

1. Introduction and main results

One well-known example of a compact, complex, non-Kählerian manifold
is the Hopf manifold, diffeomorphic to the product S2n−1 × S1 of spheres,
which can be obtained by taking the quotient of Cn\{0} by a holomorphic to-
tally discontinuous action of Z ([14]). Another example is the Calabi-Eckmann
manifold which is given by the existence of complex structures on S2k−1×S2l−1

([8]). To achieve it, Calabi and Eckmann consider the smooth fibration

S2k−1 × S2l−1 → CPk−1 × CPl−1,

equipped with the torus fiber of the bundle with a structure of an elliptic curve.
In the paper [18], López de Medrano and Verjovsky constructed a family of
compact, complex, non-symplectic manifolds which can be obtained by taking
the quotient of a open dense subset of CPn by the holomorphic action of C.
This construction was extended to the case of a holomorphic action of Cm by
Meersseman in [19]. These non-Kählerian manifolds are called LVM manifolds.
Meersseman also constructed a holomorphic foliation F on each LVM manifold,
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and showed that F is transverse Kähler with respect to the Euler class of a
certain S1-bundle (refer to [19, Theorem 7]).

Finally, in his paper [5] Bosio showed that Meersseman’s construction can
be generalized to more general holomorphic actions of Cm, so that he obtained
the so-called LVMB manifolds N = N(L, Em,n) (see Section 2 for a precise
definition). The class of these manifolds properly includes the family of LVM
manifolds. So there exists an LVMB manifold which is not biholomorphic
to any LVM manifold (see, e.g., [9, Example 1.2]). It turns out that many
interesting properties of LVM manifolds continue to hold for LVMB manifolds.
In addition, as in the case of LVM manifolds there exists a holomorphic foliation
F on each LVMB manifold.

We say that an LVMB manifold N(L, Em,n) satisfies condition (K) if there
exists a real affine automorphism of the dual space (Cm)∗ of Cm as a real vector
space R2m sending each component of an admissible configuration L to a vector
with integer coefficients. In the paper [9], Cupit-Foutou and Zaffran showed
that if the holomorphic foliation F on an LVMB manifold N = N(L, Em,n)
is transverse Kähler and N satisfies the condition (K), then N is actually an
LVM manifold. So it is natural to ask if, when the holomorphic foliation F
on an LVMB manifold N is simply transverse Kähler, N is actually an LVM
manifold.

In [15], recently Ishida gave a proof asserting that any LVMB manifold
equipped with a transverse Kähler foliation is indeed LVM. This present paper
can be regarded as a consequence of our attempt to give a more complex-
geometric proof of [15, Corollary 5.8]. The complex-geometric proof in its own
seems to be interesting, because by this way we can see how much LVMB
manifolds are different from usual compact Kähler manifolds.

To be more precise, our primary aim of this paper is to give a complex-
geometric proof of the following theorem which immediately implies the main
result of Cupit-Foutou and Zaffran in [9] (see Section 2 for precise definitions
of some terminologies).

Theorem 1.1. Let N be an LVMB manifold, and let F be the holomorphic
foliation on N such that F is transverse Kähler with respect to a basic and
transverse Kähler form. If the leaf space N/F is an orbifold, then N/F is
projective, and thus N is actually an LVM manifold.

As for the transverse Kähler foliation F as in Theorem 1.1, it turns out that
the leaf space N/F is a quasifold in the sense of [21, Section 1]. If a quasifold
version of the Kodaira embedding theorem that seems to be currently out of
reach happens to be true, the proof of Theorem 1.1 given in Section 3 would
imply that, without the additional assumption that N/F is an orbifold, N is
an LVM manifold. Note that the orbifold condition of the leaf space N/F is
equivalent to the condition (K).

As an immediate consequence of Theorem 1.1, we have the following corol-
lary which recovers [9, Theorem 3.7].
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Corollary 1.2. Let N be an LVMB manifold satisfying condition (K), and
let F be the holomorphic foliation on N such that F is transverse Kähler with
respect to a transverse, but not necessarily basic, Kähler form. Then the leaf
space N/F is a projective orbifold and N is an LVM manifold.

Proof. Since by assumption the LVMB manifold N satisfies the condition (K),
the leaves of the foliation F of N transverse to a transverse Kähler form ω
are compact complex tori of the same complex dimension, and the leaf space
N/F is an orbifold (see [20]). But then one can obtain a basic and transverse
Kähler form from ω by taking the usual averaging procedure. Hence it is
immediate to see from Theorem 1.1 that the LVMB manifold N is actually
LVM, as desired. �

We organize this paper, as follows. In Section 2, we collect basic definitions
and well-known properties of LVMB manifolds. Section 3 is devoted to giving a
proof of Theorem 1.1. Our proof is elementary, and uses an orbifold version of
the well-known Kodaira embedding theorem saying that every compact Kähler
orbifold with an integral Kähler form is always projective (see, e.g., [1] and
[12]).

2. LVMB manifolds and transverse Kähler foliations

The aim of this section is to briefly recall the construction of the so-called
LVMB manifold and to set up some basic notations and definitions necessary
for the proof of Theorem 1.1 given in Section 3 (see [9] for more details).

To do so, let m and n > 2m be positive integers. Let L = (l1, . . . , ln) be
n linear forms of Cm such that any subcollection of 2m + 1 elements of L is
an R-affine basis of (Cm)∗, where (Cm)∗ denotes the dual space of Cm. We
remark that our n corresponds to n− 1 in [9, Section 1].

Let Em,n = {Eα}α denote a family of subsets of [n] := {1, 2, . . . , n}, each of
these subsets having the cardinality 2m+ 1. Let us denote by (L, Em,n) these
data. To a given data (L, Em,n), we can also give the following definitions:

• A subset A of [n] is acceptable if it contains an element of Em,n, and
the set of all acceptable subsets of [n] will be denoted by A.

• An element of [n] is indispensable if it belongs to every element of Em,n.
• For each z ∈ Cn, let Iz denote the set of all i ∈ [n] such that i ∈ Iz if

and only if zi 6= 0. One can then define two open sets S in Cn and V
in CPn−1, as follows.

S = {z ∈ Cn | Iz ∈ A}, V = {[z] ∈ CPn−1 | Iz ∈ A}.

Since [n] ∈ A, it is easy to see that S contains (C∗)n as an open subset.
• For each Eα ∈ Em,n, we denote by Cα the convex hull in R2m of the
li’s for i ∈ Eα. Here li is regarded as an element of R2m by using the
natural identification li 7→ (Re(li), Im(li)) ∈ Rm × Rm ∼= R2m.



594 J. H. KIM

It turns out that the open subset S of Cn is given by the complement of an
arrangement of coordinate subspaces in Cn. Indeed, let P denote the simplicial
complex such that Icz ∈ P for Iz ∈ A. Then it follows from [23, Proposition 1.1
or Proposition 1.2] that

S = Cn − E,
where

E =
⋃

(i1,...,ik)/∈P

{z ∈ Cn | zi1 = · · · = zik = 0}.

From now on, let d denote the complex codimension of E in Cn.
Note that there is a C∗ × Cm-action on S defined by

(C∗ × Cm)× S → S

((α,Z), (z1, z2, . . . , zn)) 7→ (αel1(Z)z1, αe
l2(Z)z2, . . . , αe

ln(Z)zn).
(2.1)

Then it has been shown in [5, 1.4] that the action of C∗ × Cm on S yields a
compact complex quotient manifold S/(C∗ × Cm) if and only if the following
two conditions hold:

(1) (Imbrication Condition) For any Eα, Eβ ∈ Em,n, we have C◦α ∩ C◦β 6= ∅.
Here C◦α (resp. C◦β) means the relative interior of Cα (resp. Cβ).

(2) (Substitute Existence Principle) For all Eα ∈ Em,n and for all i ∈ [n],
there is an element j ∈ Eα such that

(Eα\{j}) ∪ {i} ∈ Em,n.

We say that the pair (L, Em,n) is an LVMB datum if it satisfies the above two
conditions (1) and (2), and denote by N = N(L, Em,n) the compact complex
manifold S/(C∗ × Cm) of dimension n − m − 1, called an LVMB manifold.
Moreover, if, in addition, we have

∩Eα∈Em,nC◦α 6= ∅,

then the C∗ × Cm-action on S is called an LVM-action. When the C∗ × Cm-
action is LVM, the compact complex manifold N = N(L, Em,n) is called an
LVM manifold that is exactly the manifold constructed by Meersseman in [19].

Let M be a complex manifold equipped with a regular holomorphic foliation
F , and let ω be a closed real 2-form on M . The foliation F is called transverse
Kähler with respect to ω if the following conditions are satisfied:

• The form ω is J-invariant, where J denotes the almost complex struc-
ture on the tangent bundle of M .
• For all z ∈M , the kernel of ω(z) is the tangent to the foliation F .
• The quadratic form h(u1, u2) = ω(Ju1, u2) +

√
−1ω(u1, u2) is positive-

definite on the normal bundle NF of the foliation F .

Such a closed real 2-form ω is said to be a transverse Kähler form.

Next we briefly recall the notion of a basic differential form that we need in
this paper. We refer the reader to [11, Section 4] for more details. Let M be a
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complex manifold, as before. A p-form α on M is called basic with respect to
a vector field ξ if we have

ιξα = 0, Lξα = 0,

where L denotes the Lie derivative. Then we can consider the basic de Rham
complexes as well as basic Dolbeault complexes on M whose cohomology groups
are called the basic cohomology groups. Similarly, we can also consider the basic
harmonic forms. Furthermore, results of El Kacimi-Alaoui in [10] show that
we have the isomorphisms between basic cohomology groups and the space of
harmonic forms, as expected.

When a complex manifold M admits a regular transverse Kähler foliation F
with respect to a basic and transverse Kähler form ω, it follows from the third
item of the definition of a transverse Kähler foliation that the leaf space X
always admits the structure of a Kähler quasifold by using the normal bundle
NF of the foliation F and the transverse Kähler form ω in the natural way.
More precisely, we have the following proposition which seems to be known to
some experts. For the sake of reader’s convenience, we give a sketch of the
proof.

Proposition 2.1. Let M be a complex n-dimensional manifold equipped with
a transverse Kähler foliation F generated by m-dimensional leaves with respect
to a basic and closed real 2-form ω. Then the leaf space X admits the structure
of a Kähler quasifold of complex dimension n−m in the natural way.

Proof. To begin with the proof, let us first denote by π : M → X the projection
map with the quotient topology on X. Let (Uα, ϕα) be a local coordinate
neighborhood of M with the coordinates

(w1, w2, . . . , wm, z1, z2, . . . , zn−m) ∈ Cn

such that (w1, w2, . . . , wm) ∈ Cm are the coordinates along the leaves of the
foliation F . This kind of a local coordinate neighborhood for a transverse
foliation is usually called a foliation chart.

Let πα := π|Uα , and let Vα := πα(Uα). Also let pα : ϕα(Uα) → Cn−m be
the natural projection onto the last (n−m) components of ϕα(Uα). Then, by
using the standard representation theory we may assume that πα restricted to
the normal slice NF of F in Uα is a quotient map of NF of F by a discrete
subgroup Γα of (C∗)n−m. Here Γα is the maximal subgroup of (C∗)n−m under
which ω is invariant. The fact that Γα is discrete can be also seen in other way,
since the intersection of a leaf of the foliation and the foliated chart should be
countable (see, e.g., the proof of a theorem in [22, Theorem 6]). If the discrete
subgroup Γα of (C∗)n−m happens to be finite, then the quotient space admits
an orbifold structure, while otherwise it admits just a quasifold structure as in
[21, Section 1] and [2].

Note also that if Γα is closed, then we can show the finiteness of Γα by using
the well-known fact that any closed discrete subgroup of C∗ is always finite
(see, e.g., [7, Example 2.1.8]).
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Now the rest of the proof follows from the classical result of Holmann (see,
e.g., [20, Theorem 2.7]). To be a bit more precise, by using the same notation
as above let

ψα : Vα → pα(ϕα(Uα)) ⊂ Cn−m, πα(x) 7→ pα ◦ ϕα(x).

Here, clearly Vα and pα(ϕα(Uα)) are open subsets of X and Cn−m, respectively,
and ψα is well-defined. When Vα ∩ Vβ 6= ∅, note also that

ψα ◦ ψ−1
β : ψβ(Vα ∩ Vβ)→ ψα(Vα ∩ Vβ)

is biholomorphic. Therefore, the leaf space X admits the complex orbifold
structure of complex dimension n − m given by the collection of coordinate
neighborhoods (Vα, ψα)’s as above.

In addition, it is now easy to see that on each Vα we can give a Kähler
structure ωα, induced from the closed real 2-form ω, which may be singular
along the singular locus of Vα (see, e.g., [11, Section 3] for certain similar cases).
Note also that the induced Kähler form ωα is the same as the restriction of
the globally defined closed real 2-form ω to the normal slice of the foliation
F on each Uα which is invariant under the finite subgroup Γα of (C∗)n−m.
This implies that there is a well-defined global singular Kähler form on the leaf
space X. Therefore, the leaf space X is actually a Kähler orbifold of complex
dimension n−m, as desired. �

In view of Proposition 2.1, from now on we shall assume that the leaf space X
of a transverse Kähler foliation F with respect to a basic and closed differential
2-form is a Kähler orbifold, without further mentioning.

Given an LVMB datum (L, Em,n), we next consider the vector fields ηj (1 ≤
j ≤ m) of Cn given by

ηj =

n∑
i=1

Re(lji )zi
∂

∂zi
,

where li = (l1i , . . . , l
j
i , . . . , l

m
i ). Let ξj (1 ≤ j ≤ m) be m holomorphic commut-

ing vector fields on Cn given by

ξj(z) =

n∑
i=1

lji zi
∂

∂zi
,

associated to the holomorphic action of Cm on Cn defined in (2.1), and let R
be the holomorphic vector field on Cn\{0} defined by

R(z) =

n∑
i=1

zi
∂

∂zi
.

Then the holomorphic vector fields R, ξ1, . . . , ξm, η1, . . . , ηm on Cn all commute
to each other, and are linearly independent at each point of Cn. So their
projections η̃1, . . . , η̃m are linearly independent on each point of an LVMB
manifold N , and generate a regular holomorphic foliation F of dimension m
on N .
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Generalizing the result of Loeb and Nicolau in [17], Meersseman shows in
[19, Theorem 7] that the regular holomorphic foliation F of dimension m on an
LVM manifold N is actually transverse Kähler with respect to the Euler class
of the S1-bundle π1 : M1 → N and a Kähler form ω that is the projection of
the standard Kähler form on Cn onto N . Here π1 : M1 → N is the pullback of
the bundle S2n−1 → CPn−1 by the smooth embedding of N into the projective
space.

As another remarkable result related to the transverse Kähler foliation, we
can mention that if an LVM manifold M admitting a regular transverse Kähler
foliation also satisfies the condition (K), then it has been shown in [20] that M
admits the structure of a holomorphic principal Seifert bundle with compact
complex tori as fibers over the projective toric orbifold. As in the remark given
in [20, Theorem A] the condition (K) is optimal in the sense that the transverse
Kähler foliation F without the condition (K) does not necessarily have compact
leaves.

Remark 2.2. As mentioned above, it follows from the construction that there
is a fibration on an LVMB manifold N induced from the foliation F such that

Cm ↪→ N → X.

Assume that the foliation F is transverse Kähler with a closed 2-form ω. Since
Cm is not compact, it is not always possible to make ω to be basic by taking
the usual averaging procedure.

Example 2.3. Note that the standard Hopf surface obtained by taking the
quotient of C2\{(0, 0)} by the group generated by a diagonal matrix, for ex-
ample, (

α 0
0 α

)
, α > 1

can possibly provide an example showing that the leaf spaceN/F in Proposition
2.1 is a quasifold, but not an orbifold. Indeed, the Hopf manifold is an LVM
manifold which admits a transverse Kähler foliation given by the flow of a well-
chosen linear vector field on C2. Such a foliation contains at least two elliptic
leaves corresponding to two axes of C2. Now it is possible to perturb the
foliation above in such a way that the Hopf surface contains only two elliptic
leaves and its holonomy group, say Γα appeared in the proof of Proposition
2.1, is infinite. See also [16, Example 1.3] for a similar example.

As a much simpler example that we have recently learned, let Γ be a lattice
generated by two vectors (a, b) and (c, d) in C2 with coordinates z1 and z2 such
that a, b, c, and d are all non-zero constants, and let M = C2/Γ. Let F be the
holomorphic foliation on M generated by ∂

∂z1
. Then F is transverse Kähler

with respect to the closed 2-form − 1
2
√
−1
dz2 ∧ dz̄2. With a suitable choice of

a, b, c, and d, each leaf of F is not closed, and so the leaf space M/F is not an
orbifold, but a quasifold.
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Remark 2.4. It is important to note that by Proposition 2.1 there is no difficulty
in applying an orbifold version of the Kodaira embedding theorem as well as
other well-known theorems in complex geometry to the leaf space X, when X
admits an integral Hodge class. This fact will play an important role in the
proof of Theorem 1.1 given in Section 3.

3. Proof of Theorem 1.1

The aim of this section is to give a proof of our main Theorem 1.1, as follows.

Proof of Theorem 1.1. In order to prove it, assume that N admits the trans-
verse Kähler foliation F , and let X denote the leaf space of the foliation F on
N . For the rest of the paper, the de Rham cohomology and Dolbeault coho-
mology of the leaf space X will always mean those of the complexes of basic
forms, unless stated otherwise.

With these understood, it also follows from a work [10] of El Kacimi-Alaoui
that, roughly speaking, the cohomology of the complex of basic forms on S is
the same as the de Rham cohomology of the leaf space X obtained from the
complexes of basic differential forms on N . In particular, we have

H2
B(S,OS) ∼= H2

∂̄(X,OX),

where OS (resp. OX) denotes the sheaf of germs of holomorphic functions on
S (resp. X).

Indeed, consider the following short exact sequence on S

(3.1) 0 −→ OinvS −→ OS
L−→ Oetr −→ 0.

Here, Oetr is the image of OS in O⊕2m+1
S , and OinvS denotes the sheaf of germs

of holomorphic functions on S which are invariant along the linear foliation
generated by R, ξ1, . . . , ξm, η1, . . . , ηm. Moreover, let LR, Lξi , and Lηi denote
the Lie derivatives with respect to R, ξi, and ηi, respectively. Then L is given
by

L = LR ⊕ Lξ1 ⊕ · · · ⊕ Lξm ⊕ Lη1 ⊕ · · · ⊕ Lηm .
Thus it follows from the short exact sequence (3.1) that we have

H2
∂̄(X,OX) ∼= H2

∂̄(S,OinvS ) =: H2
B(S,OS).

We next claim that we have

H2
∂̄(X,OX) = 0.

To prove the claim, as before let d denote the complex codimension of E in
Cn. Then we divide the proof of the claim into two cases, and besides we will
complete the proof of Theorem 1.1 for each case.

So we first assume that d is greater than or equal to 2. Then, in particular,
S is a 2-connected open subset in Cn. We next consider the homotopy sequence
of the fibration

C∗ × Cm ↪→ S → N.
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Since S is 2-connected, it is easy to see that

π2(N) ∼= π1(C∗ × Cm) ∼= Z, π1(N) ∼= π1(S) = 0.

Thus, by the Hurewicz isomorphism theorem ([6], p. 225) we have

H2(N ;Z) ∼= π2(N) ∼= Z.

Moreover, by considering the fibration induced from the foliation F on N

Cm ↪→ N → X

we also have πi(N) ∼= πi(X) for all non-negative integers i. Thus, by applying
the Whitehead’s theorem ([13], p. 346) we have Hi(N ;R) ∼= Hi(X;R) for all
non-negative integers i. In particular, we have H2(X;R) ∼= R. We note that if
d > 1, then this fits well with the computation given in [9, Proposition 3.4] or
[5, Proposition 2.1] for the cases dealt with in their papers.

Since N is assumed to admit a transverse Kähler foliation F , as mentioned
above and in Section 2, it is well known (see, e.g., [11]) that, by using a work
[10] of El Kacimi-Alaoui and the notion of basic differential forms, the Hodge
decomposition theorem on the leaf space X holds, as follows.

(3.2) H2
DR(X,C) ∼= H0,2

∂̄
(X)⊕H1,1

∂̄
(X)⊕H2,0

∂̄
(X).

On the other hand, since H2(X,R) ∼= R and H1,1

∂̄
(X) 6= 0, it follows from (3.2)

that we have

H2
∂̄(X,OX) = 0,

as claimed. This implies that we have

R ∼= H2(X,R) ∼= H1,1

∂̄
(X).

Since H2(X,Q) ⊂ H2(X,R) ∼= H1,1

∂̄
(X), we can conclude that there should be

an integral Kähler form on X whose lift to N is a basic and transverse Kähler
form. Hence it follows from the assumption of Theorem 1.1 that our orbit space
X is, in fact, a Kähler orbifold with an integral Kähler form, so X should be
projective by an orbifold version of the Kodaira embedding theorem ([1] and
[12, p. 191]).

Further, observe that our leaf space X is a toric orbifold. To see it, note first
that by Proposition 2.1 X is an orbifold of complex dimension n − (2m + 1).
Moreover, since Cn admits a holomorphic action of (C∗)n under the multipli-
cation and S is an open subset of Cn invariant under the holomorphic action
of (C∗)n, it follows from the construction that our LVMB manifold N admits
a holomorphic action of (C∗)n−m−1. Thus the leaf space X now admits a
holomorphic action of (C∗)n−(2m+1), as desired.

Recall that the associated polytope of a projective toric manifold is a Delzant
(or moment) polytope which is, in particular, polytopal. Clearly this fact
applies to our toric projective manifold (or orbifold) X, and so the associated
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polytope of X is polytopal. Therefore, N is actually an LVM manifold by
[4, Theorem 3.10]1.

We next assume that d is equal to 1. This implies that there is an indis-
pensable element i ∈ [n], say i = 1. So we may write

S = C∗ × S ′,

where S ′ = Cn−1 − E′ and E′ is an arrangement of coordinate subspaces in
Cn−1 whose complex codimension d′ is at least two. Note that we have

π1(S) ∼= Z, πi(S) ∼= πi(S ′), i ≥ 2.

As in the above arguments, it is also easy to see that

π2(S) ∼= π2(S ′) ∼= Z.

Now, as before we consider the homotopy sequence of the fibration

C∗ × Cm ↪→ S → N.

Then we can obtain

−→ π2(C∗ × Cm) = 0 −→ π2(S) = Z −→ π2(N)

−→ π1(C∗ × Cm) = Z −→ π1(S) = Z −→ π1(N) −→ 0.
(3.3)

By the standard diagram-chasing of (3.3), it is not difficult to obtain the fol-
lowing two possibilities:

π2(N) ∼= Z and π1(N) = 0, or π2(N) = Z o Z and π1(N) = Z.

Once again, by considering the fibration induced from the foliation F on N

Cm ↪→ N → X,

we have πi(N) ∼= πi(X) for all non-negative integers i. Thus, by applying
the Whitehead’s theorem ([13], p. 346) we have Hi(N ;R) ∼= Hi(X;R) for
all non-negative integers i. In particular, we have H2(X;R) ∼= R or R ⊕ R.
Once again, this fits well with the computation given in [9, Proposition 3.4] or
[5, Proposition 2.1] for the case of d = 1.

Next, we apply the Hodge decomposition on the leaf space X, as follows.

H2
DR(X,C) ∼= H0,2

∂̄
(X)⊕H1,1

∂̄
(X)⊕H2,0

∂̄
(X).

Since H2
DR(X;C) ∼= C or C ⊕ C, H0,2

∂̄
(X) ∼= H2,0

∂̄
(X), and H1,1

∂̄
(X) is non-

trivial, we should have H0,2

∂̄
(X) = 0, as claimed.

Finally, the rest of the proof goes exactly as in the case of d ≥ 2. That is,
since H2(X,Q) ⊂ H2(X,R) ∼= H1,1

∂̄
(X), there should be an integral Kähler

form on X whose lift to N is a basic and transverse Kähler form. Hence once
again our orbit space X is a Kähler orbifold with an integral Kähler form, so

1Theorem 3.10 in [4] is stated in a slightly different way, but, as is well-known, it says
that if the associated underlying simplicial complex of X is polytopal as in our case, then N

is an LVM manifold. For instance, see [3]
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that X is projective by an orbifold version of the Kodaira embedding theorem.
Therefore, N is actually an LVM manifold by [4, Theorem 3.10].

This completes the proof of Theorem 1.1. �
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