DOI QR코드

DOI QR Code

GRADIENT EINSTEIN-TYPE CONTACT METRIC MANIFOLDS

  • Received : 2019.07.18
  • Accepted : 2020.01.07
  • Published : 2020.04.30

Abstract

Consider a gradient Einstein-type metric in the setting of K-contact manifolds and (κ, µ)-contact manifolds. First, it is proved that, if a complete K-contact manifold admits a gradient Einstein-type metric, then M is compact, Einstein, Sasakian and isometric to the unit sphere 𝕊2n+1. Next, it is proved that, if a non-Sasakian (κ, µ)-contact manifolds admits a gradient Einstein-type metric, then it is flat in dimension 3, and for higher dimension, M is locally isometric to the product of a Euclidean space 𝔼n+1 and a sphere 𝕊n(4) of constant curvature +4.

Keywords

References

  1. D. E. Blair, Riemannian geometry of contact and symplectic manifolds, second edition, Progress in Mathematics, 203, Birkhauser Boston, Inc., Boston, MA, 2010. https://doi.org/10.1007/978-0-8176-4959-3
  2. D. E. Blair, T. Koufogiorgos, and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math. 91 (1995), no. 1-3, 189-214. https://doi.org/10.1007/BF02761646
  3. E. Boeckx, A full classification of contact metric (k, ${\mu}$)-spaces, Illinois J. Math. 44 (2000), no. 1, 212-219. http://projecteuclid.org/euclid.ijm/1255984960 https://doi.org/10.1215/ijm/1255984960
  4. C. P. Boyer and K. Galicki, Einstein manifolds and contact geometry, Proc. Amer. Math. Soc. 129 (2001), no. 8, 2419-2430. https://doi.org/10.1090/S0002-9939-01-05943-3
  5. C. P. Boyer and K. Galicki, Sasakian Geometry, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2008.
  6. H.-D. Cao, X. Sun, and Y. Zhang, On the structure of gradient Yamabe solitons, Math. Res. Lett. 19 (2012), no. 4, 767-774. https://doi.org/10.4310/MRL.2012.v19.n4.a3
  7. J. Case, Y.-J. Shu, and G. Wei, Rigidity of quasi-Einstein metrics, Differential Geom. Appl. 29 (2011), no. 1, 93-100. https://doi.org/10.1016/j.difgeo.2010.11.003
  8. G. Catino, P. Mastrolia, D. D. Monticelli, and M. Rigoli, On the geometry of gradient Einstein-type manifolds, Pacific J. Math. 286 (2017), no. 1, 39-67. https://doi.org/10.2140/pjm.2017.286.39
  9. G. Catino and L. Mazzieri, Gradient Einstein solitons, Nonlinear Anal. 132 (2016), 66-94. https://doi.org/10.1016/j.na.2015.10.021
  10. P. Daskalopoulos and N. Sesum, The classification of locally conformally flat Yamabe solitons, Adv. Math. 240 (2013), 346-369. https://doi.org/10.1016/j.aim.2013.03.011
  11. A. Ghosh, Certain contact metrics as Ricci almost solitons, Results Math. 65 (2014), no. 1-2, 81-94. https://doi.org/10.1007/s00025-013-0331-9
  12. A. Ghosh, (m, ${\rho}$)-quasi-Einstein metrics in the frame-work of K-contact manifolds, Math. Phys. Anal. Geom. 17 (2014), no. 3-4, 369-376. https://doi.org/10.1007/s11040-014-9161-6
  13. A. Ghosh, Quasi-Einstein contact metric manifolds, Glasg. Math. J. 57 (2015), no. 3, 569-577. https://doi.org/10.1017/S0017089514000494
  14. A. Ghosh, Generalized m-quasi-Einstein metric within the framework of Sasakian and K-contact manifolds, Ann. Polon. Math. 115 (2015), no. 1, 33-41. https://doi.org/10.4064/ap115-1-3
  15. R. S. Hamilton, The formation of singularities in the Ricci flow, in Surveys in differential geometry, Vol. II (Cambridge, MA, 1993), 7-136, Int. Press, Cambridge, MA, 1995.
  16. G. Huang and H. Li, On a classification of the quasi Yamabe gradient solitons, Methods Appl. Anal. 21 (2014), no. 3, 379-389. https://doi.org/10.4310/MAA.2014.v21.n3.a7
  17. G. Huang and Y.Wei, The classification of (m, ${\rho}$)-quasi-Einstein manifolds, Ann. Global Anal. Geom. 44 (2013), no. 3, 269-282. https://doi.org/10.1007/s10455-013-9366-0
  18. J. N. V. Gomes, A note on gradient Einstein-type manifolds, Differential Geom. Appl. 66 (2019), 13-22. https://doi.org/10.1016/j.difgeo.2019.04.002
  19. S. B. Myers, Connections between differential geometry and topology. I. Simply connected surfaces, Duke Math. J. 1 (1935), no. 3, 376-391. https://doi.org/10.1215/S0012-7094-35-00126-0
  20. Z. Olszak, On contact metric manifolds, Tohoku Math. J. (2) 31 (1979), no. 2, 247-253. https://doi.org/10.2748/tmj/1178229842
  21. D. S. Patra and A. Ghosh, The Fischer-Marsden conjecture and contact geometry, Period. Math. Hungar. 76 (2018), no. 2, 207-216. https://doi.org/10.1007/s10998-017-0220-1
  22. G. Perelman, The entropy formula for the Ricci flow and its geometric applications, Preprint, 2002.
  23. S. Pigola, M. Rigoli, M. Rimoldi, and A. G. Setti, Ricci almost solitons, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 10 (2011), no. 4, 757-799.
  24. R. Sharma, Certain results on K-contact and (${\kappa},{\mu}$)-contact manifolds, J. Geom. 89 (2008), no. 1-2, 138-147. https://doi.org/10.1007/s00022-008-2004-5
  25. Y. Tashiro, Complete Riemannian manifolds and some vector fields, Trans. Amer. Math. Soc. 117 (1965), 251-275. https://doi.org/10.2307/1994206