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AUTOMORPHISMS OF UNIFORM LATTICES OF

NILPOTENT LIE GROUPS UP TO DIMENSION FOUR

Jong Bum Lee and Sang Rae Lee

Abstract. In this paper, when G is a connected and simply connected

nilpotent Lie group of dimension less than or equal to four, we study
the uniform lattices Γ of G up to isomorphism and then we study the

structure of the automorphism group Aut(Γ) of Γ from the viewpoint of
splitting as a natural extension.

1. Introduction

In this paper we study the group of automorphisms of any uniform lattice of
a connected and simply connected nilpotent Lie group G up to dimension four.
This work was motivated by the papers [3] and [5], in which the authors consid-
ered the discrete subgroup Heis(3,Z) of the three-dimensional Heisenberg group
Heis(3,R) and proved that the automorphism group Aut(Heis(3,Z)) admits a
splitting as a natural extension of Z2 by GL(2,Z).

The connected and simply connected nilpotent Lie groups of dimension less
than or equal to four are well understood. In dimension one or two, there is only
one such Lie group, the abelian Lie group R or R2. There are two connected
and simply connected three-dimensional nilpotent Lie groups R3 and Nil3. The
Lie group Nil3 is the Heisenberg group

Heis(3,R) =


1 y z

0 1 x
0 0 1

 | x, y, z ∈ R

 .

There are three connected and simply connected four-dimensional nilpotent Lie
groups R4,Nil3×R and Nil4. The Lie groups Nil3×R and Nil4 are of the form
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R3 oϕ(s) R, [4], where ϕ(s) is respectively

ϕ(s) =

1 s 0
0 1 0
0 0 1

 and

1 s 1
2s

2

0 1 s
0 0 1

 .

For solvable Lie groups, one may refer to [6, 7].
A discrete subgroup Γ of a Lie group G is called a uniform lattice of G

if its orbit space Γ\G is compact. When G is an abelian Lie group Rn, every
uniform lattice Γ of G is isomorphic to Zn ⊂ Rn and hence Aut(Γ) ∼=Aut(Zn) ∼=
GL(n,Z).

In this paper, when G is Nil3, Nil3 × R or Nil4, we first study the uniform
lattices Γ of G up to isomorphism and then we study the structure of the
automorphism group Aut(Γ) of Γ from the viewpoint of splitting as a natural
extension.

2. The Lie group Nil3

The Lie group Nil3 is the Heisenberg group

Heis(3,R) =


1 y z

0 1 x
0 0 1

 | x, y, z ∈ R

 .

We will study Aut(Γ) for any uniform lattice Γ of Nil3. The groups

Γk =


1 n `

k
0 1 m
0 0 1

 | `,m, n ∈ Z


are uniform lattices of Nil3. Note that Γ1 = Heis(3,Z), and Γ−k ∼= Γk for all
k 6= 0. It is known that any uniform lattice of Nil3 is isomorphic to exactly one
Γk for some k > 0. In [3] and [5], it is shown that the automorphism group of
Γ1 is isomorphic to the group Z2 o GL(2,Z). Utilizing the methods employed
in [3] and [5], we can prove that Aut(Γk) is isomorphic to Z2 o GL(2,Z) for
every k > 0.

Lemma 2.1. The lattice Γk of Nil3 may be presented as

Γk = 〈α, β, γ | [α, β] = γ−k, [γ, α] = [γ, β] = 1 〉

with α, β and γ corresponding to the generators

α =

1 0 0
0 1 1
0 0 1

 , β =

1 1 0
0 1 0
0 0 1

 , γ =

1 0 1
k

0 1 0
0 0 1

 .

Because the center Z(Γk) of Γk is generated by γ, every automorphism of Γk
induces an automorphism of the quotient group Γk/Z(Γk)∼=Z2. Thus we have a
natural homomorphism ϑ : Aut(Γk)→ GL(2,Z). Indeed it is well-known that
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ϑ is surjective, see for example [3, Proposition 6]. The purpose of this section
is, using the Lie algebra argument, to prove that ϑ : Aut(Γk)→ GL(2,Z) splits.

Recall that the Lie algebra nil3 of Nil3 is

nil3 =


0 b c

0 0 a
0 0 0

 | a, b, c ∈ R

 .

Choose the canonical basis {e1, e2, e3} in nil3 where

e1 =

0 0 0
0 0 1
0 0 0

 , e2 =

0 1 0
0 0 0
0 0 0

 , e3 =

0 0 1
0 0 0
0 0 0

 .

Then [e1, e2] = −e3 and [e3, e1] = [e3, e2] = 0. With respect to the canonical
basis, each automorphism of nil3 has a matrix presentation.

Proposition 2.2 ([2, Proposition 2.2]). The group Aut(nil3) of all automor-
phisms of the Lie algebra nil3 is isomorphic to the matrix group

a b 0
c d 0
u v ad− bc

 | a, b, c, d, u, v ∈ R, ad− bc 6= 0

 .

Since the Lie group Nil3 is simply connected, we have a canonical isomor-
phism Aut(Nil3) ∼= Aut(nil3) defined by ϕ 7→ dϕ fitting in the following com-
muting diagram:

nil3
dϕ−−−−→ nil3xlog

yexp

Nil3
ϕ−−−−→ Nil3

(2.1)

Using the diffeomorphism

exp : nil→ Nil,

0 b c
0 0 a
0 0 0

 7→
1 b c+ 1

2ab
0 1 a
0 0 1


we can see that if

dϕ =

a b 0
c d 0
u v ad− bc

 ,

then

ϕ = exp ◦ dϕ ◦ log :

1 y z
0 1 x
0 0 1

 7−→
1 cx+ dy z∗

0 1 ax+ by
0 0 1

 ,(2.2)

where z∗ = (ad− bc)z + 1
2acx

2 + ux+ bcxy + vy + 1
2bdy

2. In what follows, we
shall identify φ = dϕ with ϕ.
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Consider the uniform lattice Γk of Nil3. Due to Mal’cev, every automorphism
of Γk can be extended uniquely to a Lie group automorphism of Nil3. This
implies that we can regard Aut(Γk) as a subgroup of Aut(Nil3). Thus

Aut(Γk) ⊂ Aut(Nil3) = Aut(nil3)

as a subgroup of the matrix group GL(3,R). Furthermore, we have a commu-
tative diagram between surjective homomorphisms

Aut(nil3)
ϑ̃−−−−→ Aut(R2) = GL(2,R) −−−−→ 1x x

Aut(Γk)
ϑ−−−−→ GL(2,Z) −−−−→ 1

where the vertical maps are inclusions, and

ϑ̃ :

a b 0
c d 0
u v ad− bc

 7→ (
a b
c d

)
.

Now we recall that GL(2,Z) is presented as

〈ρ, τ, κ | ρτρ = τρτ, (ρτρ)4 = 1, κρκ−1 = ρ−1, κτκ−1 = τ−1, κ2 = 1〉,
where ρ, τ and κ may be taken to correspond to the matrices

ρ =

(
1 1
0 1

)
, τ =

(
1 0
−1 1

)
, κ =

(
−1 0

0 1

)
.

We seek an explicit section η of ϑ̃. Consider the following elements of
Aut(nil3):

R =

 1 1 0
0 1 0
u1 v1 1

 , T =

 1 0 0
−1 1 0
u2 v2 1

 , K =

 −1 0 0
0 1 0
u3 v3 −1

 .

As observed above, these elements are regarded as elements of Aut(Nil3). As-
sume that the elements R, T,K satisfy the defining relations of GL(2,Z).

RTR = TRT, (RTR)4 = I3, (RTR)2 6= I3,

K2 = I3, KRK
−1 = R−1, KTK−1 = T−1.

By direct computation with (2.2) we have

R(α) = αγu1k, R(β) = αβγ(v1+1/2)k, R(γ) = γ,

T (α) = αβ−1γ(u2−1/2)k, T (β) = βγv2k, T (γ) = γ,

K(α) = α−1γu3k, K(β) = βγv3k, K(γ) = γ−1.

Using [α, γ] = [β, γ] = 1, it is immediate to check the implications

RTR(α) = TRT (α)⇒ v2 = 0,

K2(α) = α⇒ u3 = 0,
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KRK−1(α) = R−1(α)⇒ u1 = 0,

KTK−1(α) = T−1(α)⇒ 2u2 + v3 = −1.

We can choose v1, u2, v3 appropriately so that R, T,K also preserve Γk. For
example, one can take

R =

1 1 0
0 1 0
0 − 1

2 1

 , T =

 1 0 0
−1 1 0

1
2 0 1

 , K =

−1 0 0
0 1 0
0 −2 −1


and define η : GL(2,Z)→ Aut(nil3) by ρ 7→ R, τ 7→ T, κ 7→ K. It is straight-
forward to check that the above R, T and K satisfy the remaining relations of
GL(2,Z). Therefore, the subgroup of Aut(Γk) ⊂ Aut(nil3) generated by R, T
and K is isomorphic to GL(2,Z). Consequently, η provides a desired splitting
of ϑ. The splitting η is independent of Γk.

Remark 2.3. The group structure of Aut(Γk) is complicated. By considering
the Lie algebra, we can embed Aut(Γk) as a subgroup of the matrix group
GL(3,R). This makes easy to check whether a splitting function of the surjec-
tive homomorphism ϑ : Aut(Γk)→ GL(2,Z) is a “homomorphism”.

Remark 2.4 (Automorphisms of Γk). We have shown that the homomorphism

ϑ : Aut(Γk)(⊂ Aut(nil3) ⊂ GL(3,R))→ GL(2,Z)

is surjective and splits. This in particular implies that

Aut(Γk) =

H =

m11 m12 0
m21 m22 0
p1 p2 p3

 ∈ Aut(nil3)
∣∣∣ H preserves Γk

 .

It is now straightforward to observe further that

Aut(Γk) =


m11 m12 0
m21 m22 0
p1 p2 m11m22 −m21m22

 ∣∣∣ mij ∈ Z,
pi + k

2m1im2i ∈ Z

 .

Hence, the groups Aut(Γk) are identical for all k 6= 0.

In conclusion we have that

ker(ϑ) =


 1 0 0

0 1 0
p1 p2 1

 ∣∣∣ p1, p2 ∈ Z

 ∼= Z⊕ Z,

and

Aut(Γk) ∼= (Z⊕ Z) o GL(2,Z),

where the GL(2,Z)-action on ker(ϑ) is

g · p =
(
p1 p2

)(g11 g12
g21 g22

)−1
.(2.3)
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3. The nilpotent Lie group Nil3 × R

There are three simply connected four-dimensional nilpotent Lie groups:
R4,Nil3 × R and Nil4. The Lie groups Nil3 × R and Nil4 are of the form
R3 oϕ(s) R, [4], where ϕ(s) is respectively

ϕ(s) =

1 s 0
0 1 0
0 0 1

 and

1 s 1
2s

2

0 1 s
0 0 1

 .

The group law of R3 oϕ(s) R is

(x, s)(y, t) = (x + ϕ(s)y, s+ t),

and it can be embedded affinely in GL(4,R) as{(
ϕ(s) x

0 1

)}
⊂ GL(4,R),

where ϕ(s) ∈ GL(3,R) and x ∈ R3 is a column vector. Remark that Nil3 × R
is 2-step and Nil4 is 3-step. We will continue to study Aut(Γ) for a uniform
lattice Γ of Nil3 × R in this section and Nil4 in the next section.

It is easy to see that any uniform lattice Γ of Nil3 × R is isomorphic to
the product Γk × Z, where Γk is a uniform lattice of Nil3, see for example
[1, Corollary 6.2.5]. Hence Γ can be presented as

〈α, β, γ, δ | [α, β] = γ−k, [γ, α] = [γ, β] = [δ, α] = [δ, β] = [δ, γ] = 1 〉

with α, β, γ and δ corresponding to the generators

α =


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

 , β =


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

γ =


1 0 0 1

k
0 1 0 0
0 0 1 0
0 0 0 1

 , δ =


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 .

Let us denote Γk × Z by Γk,0. Since Z(Γk,0) = 〈γ, δ〉, we obtain a canonical
surjective homomorphism ϑ′ : Aut(Γk,0) → GL(2,Z). We will show that ϑ′

also splits. It suffices to show that Aut(Γk) can be regarded as a subgroup of
Aut(Γk,0) so that the following diagram is commutative:

Aut(Γk,0)
ϑ̃−−−−→ GL(2,Z) −−−−→ 1x x=

Aut(Γk)
ϑ−−−−→ GL(2,Z) −−−−→ 1

(3.1)
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Every element of Γk,0 can be written as αmβnγpδq. It can be seen easily
that

(αmβnγpδq)r = αrmβrnγrp+kr
(2)mnδrq,(3.2)

βnαm = αmβnγkmn(3.3)

for all r ∈ Z. For any h ∈ Aut(Γk,0), since Z(Γk,0) = 〈γ, δ〉, we must have

h(α) = αm11βm21γp11δp21 ,

h(β) = αm12βm22γp12δp22 ,

h(γ) = γeδe
′
, h(δ) = γe1δe2 ,

for some integers mij , pij and e, e′, e1, e2. Since h preserves the commutator
relations

[α, β] = γ−k, [γ, α] = [γ, β] = [δ, α] = [δ, β] = [δ, γ] = 1,

it follows from (3.2) and (3.3) that e′ = 0 and e = m11m22 −m12m21. Notice
that

(1) ϑ̃(h) =

(
m11 m12

m21 m22

)
,

(2) any automorphism h of Γk can be regarded as an automorphism h of
Γk,0 by taking

p21 = p22 = e′ = e1 = 0, e2 = 1.

Consequently, we have shown that the diagram (3.1) is commutative and

since ϑ splits by Section 2 it follows that ϑ̃ splits.

4. The nilpotent Lie group Nil4

The nilpotent Lie group Nil4 is the matrix group

Nil4 =




1 s 1
2s

2 x
0 1 s y
0 0 1 z
0 0 0 1

 | x, y, z, s ∈ R


and so its Lie algebra is

nil4 =




0 s 0 a
0 0 s b
0 0 0 c
0 0 0 0

 | a, b, c, s ∈ R

 .

The commutator subgroup [Nil4,Nil4] is R2 (with s = z = 0), and the center
Z(Nil4) of Nil4 is R (with s = y = z = 0). Since Nil4/Z(Nil4) is a three-
dimensional nilpotent Lie group, it follows that it is isomorphic to Nil3. That
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is,

Nil3

π

x∼=
1 −−−−→ Z(Nil4) −−−−→ Nil4 −−−−→ Nil4/Z(Nil4) −−−−→ 1

where the explicit isomorphism is given by

π :


1 s 1

2s
2 ∗

0 1 s y
0 0 1 z
0 0 0 1

 7−→
1 s y

0 1 z
0 0 1

 .

We can see further that [Nil4,Nil4]/Z(Nil4) is isomorphic to Z(Nil3). Conse-
quently, we obtain the following commutative diagram:

1 1x x
1 −−−−→ Z(Nil3) −−−−→ Nil3 −−−−→ Nil3/Z(Nil3) −−−−→ 1x xπ x∼=
1 −−−−→ [Nil4,Nil4] −−−−→ Nil4 −−−−→ Nil4/[Nil4,Nil4] −−−−→ 1x x

Z(Nil4)
=−−−−→ Z(Nil4)x x

1 1

4.1. The lattices of Nil4

Noting that the subset of elements of Nil4 with s, x, y, z ∈ Z is not a group,
we shall describe the uniform lattices of Nil4.

Let Γ be a uniform lattice of Nil4. Then Z(Nil4) ∩ Γ is a uniform lattice of
Z(Nil4) = R, and Γ/(Z(Nil4) ∩ Γ) is a uniform lattice of Nil4/Z(Nil4) = Nil3.
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Hence Γ fits in the following short exact sequences:

1 1x x
1 −−−−→ Z −−−−→ Γ̄ −−−−→ Z2 −−−−→ 1x xπ x∼=
1 −−−−→ Z2 −−−−→ Γ −−−−→ Z2 −−−−→ 1x x

Z =−−−−→ Zx x
1 1

(4.1)

Since Γ̄ is a uniform lattice of Nil3, it is isomorphic to some Γk. Thus we
can choose a set of generators α, β, γ, δ of Γ so that δ ∈ Z(Nil4), and ᾱ, β̄, γ̄
generate Γ̄. We can assume that [ᾱ, β̄] = γ̄−k with k > 0. This implies that
α, β, γ and δ may be taken to correspond to matrices in Nil4 of the form

α =


1 0 0 a
0 1 0 0
0 0 1 1
0 0 0 1

 , β =


1 1 1

2 b
0 1 1 0
0 0 1 0
0 0 0 1

 ,(4.2)

γ =


1 0 0 c
0 1 0 1

k
0 0 1 0
0 0 0 1

 , δ =


1 0 0 d
0 1 0 0
0 0 1 0
0 0 0 1

 .

A direct computation shows that the commutators among α, β, γ, δ are inde-
pendent of a and b, hence we may choose a = b = 0. Moreover, [α, γ] = 1.
Therefore, Γ can be presented as

〈α, β, γ, δ | [α, β] = γ−kδm, [α, γ] = 1,(4.3)

[β, γ] = δn, [α, δ] = [β, δ] = [γ, δ] = 1〉.

We choose a, b, c and d > 0 so that they satisfy

a = b = 0, dn =
1

k
, kc = dm+

1

2
.(4.4)

Then we can assume that k, n > 0 and the choice (4.2) of matrices for α, β, γ
and δ with the conditions (4.4) gives rise to a realization of an abstract group
with presentation (4.3) as a uniform lattice of Nil4. We shall denote this Γ by
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Γk,m,n with k, n ∈ N and m ∈ Z. For example, we can see that

Γ1,−1,2 =




1 n2
n2
2

2
n4

2
0 1 n2 n3
0 0 1 n1
0 0 0 1

 ∣∣∣ n1, n2, n3, n4 ∈ Z

 .

We remark also that Γk,m,n ∼= Γk′,m′,n′ if and only if

k = k′, n = n′, m′ = ±m mod (k, n),

see for example [1, Corollary 6.2.7].

4.2. Automorphisms of Γk,m,n

Let Γ = Γk,m,n and let h : Γ → Γ be an automorphism of Γ. Then h
preserves the diagram (4.1). This implies that the diagram (4.1) induces the
following commutative diagram:

Aut(Γk)
ϑ−−−−→ GL(2,Z)xσ x=

Aut(Γ)
Θ−−−−→ GL(2,Z)

Here σ : Aut(Γ) → Aut(Γk) is the homomorphism induced by π. We remark
also that ϑ is surjective and split by Section 2.

Consider the elements ei ∈ nil4

e1 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , e2 =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 ,

e3 =


0 0 0 m

k2n + 1
2k

0 0 0 1
k

0 0 0 0
0 0 0 0

 , e4 =


0 0 0 1

kn
0 0 0 0
0 0 0 0
0 0 0 0

 .

Then

exp e1 = α, exp e2 = β, exp e3 = γ, exp e4 = δ

generate Γ, and the nontrivial Lie brackets in nil4 between e1, e2, e3 and e4 are

[e1, e2] = −ke3 +

(
m+

kn

2

)
e4, [e2, e3] = ne4.(4.5)

Consider a Lie algebra automorphism φ : nil4 → nil4 of nil4. Then φ is a
linear transformation of the linear space nil4 preserving all the Lie brackets
between the linear basis {e1, e2, e3, e4} of nil4. Because φ must preserve the
lower central series of nil4, it is of the form

φ(e1) = a11e1 + a21e2 + p11e3 + p21e4,
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φ(e2) = a12e1 + a22e2 + p12e3 + p22e4,

φ(e3) = a33e3 + a43e4,

φ(e4) = a44e4.

Because ϕ must preserve all the Lie brackets (4.5) including the trivial ones,
we obtain that

a21 = 0,

a33 = a11a22,

a44 = a22a33 = a11a
2
22,

a43k = a22p11n+ a11a22(a22 − 1)

(
m+

kn

2

)
.

Consequently, we have that Aut(nil4) is isomorphic to a subgroup of the matrix
group GL(4,R):


a11 a12 0 0
0 a22 0 0
p11 p12 a11a22 0
p21 p22 p23 a11a

2
22

 ∣∣∣ p23k = a22p11n
+a11a22(a22 − 1)

(
m+ kn

2

)
 .(4.6)

By a result of Mal’cev again, we can regard

Aut(Γ) ⊂ Aut(Nil4) = Aut(nil4)

via the following commutative diagram:

nil4
φ=dϕ−−−−→ nil4xlog

yexp

Nil4
ϕ−−−−→ Nil4x x

Γ
ϕ−−−−→ Γ

(4.7)

Definition 4.1. Denote by UT(2,−) the subgroup of GL(2,−) consisting of
upper triangular matrices.

Thus we have commutative diagrams:

Aut(nil4) −−−−→ UT(2,R) −−−−→ 1x x
Aut(Γ)

Θ−−−−→ UT(2,Z) −−−−→ 1

(4.8)
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and

Aut(Γk)
ϑ−−−−→ GL(2,Z) −−−−→ 1xσ x

Aut(Γk,m,n)
Θ−−−−→ UT(2,Z) −−−−→ 1.

(4.9)

This induces the following commutative diagram:

1 −−−−→ ker(ϑ) −−−−→ ϑ−1(UT(2,Z))
ϑ−−−−→ UT(2,Z) −−−−→ 1x xσ x=

1 −−−−→ ker(Θ) −−−−→ Aut(Γk,m,n)
Θ−−−−→ UT(2,Z) −−−−→ 1

Remark that the top extension 1→ ker(ϑ)→ ϑ−1(UT(2,Z))
ϑ→ UT(2,Z)→ 1

splits by Section 2. If Θ splits then ϑ splits as well. We will study whether the
bottom extension

1→ ker(Θ)→ Aut(Γk,m,n)
Θ→ UT(2,Z)→ 1

splits.

4.3. Splitting of Aut(Γk,m,n)
Θ→ UT(2,Z)

Remark that the subgroup UT(2,Z) of GL(2,Z) is generated by

ρ =

(
1 1
0 1

)
, κ =

(
−1 0

0 1

)
, η =

(
−1 0

0 −1

)
.

They satisfy the relations

κ2 = η2 = 1, κη = ηκ, κρκ−1 = ρ−1, ηρη−1 = ρ.

To discuss whether Θ splits, we first lift ρ, κ and η to elements of Aut(nil4)
using (4.6) as follows:

R =


1 1 0 0
0 1 0 0
r11 r12 1 0
r21 r22 r23 1

 with r23k = r11n,

K =


−1 0 0 0

0 1 0 0
k11 k12 −1 0
k21 k22 k23 −1

 with k23k = k11n,

N =


−1 0 0 0

0 −1 0 0
n11 n12 1 0
n21 n22 n23 −1

 with n23k = −n11n− 2

(
m+

kn

2

)
.
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We first find the conditions on R,N and K to generate a subgroup of
Aut(nil4) isomorphic to UT(2,Z). They must satisfy the identities

K2 = N2 = I2, KN = NK, KRK−1 = R−1, NRN−1 = R(4.10)

or equivalently they satisfy

r11 = r21 = r23 = 0, k11 = k21 = k23 = 0,

n11 = −2r12, n12 = −k12,

n23 = −2m+ kn+ nn11
k

, n21 =
n11n23

2
, n22 =

n12n23
2

.

Next we find the conditions on R,K and N to preserve the lattice Γk,m,n.

For this purpose, we need to recall that a Lie algebra automorphism of nil4 is
regarded as a Lie group automorphism of Nil4 via the diagram (4.7). In fact,
by considering Nil4 as the Mal’cev completion of Γk,m,n, i.e., by considering

the elements of Nil4 as αr1βr2γr3δr4 for ri ∈ R, we can see that

R(α)=α, R(β)=αβγ
k−n11

2 δ−
6m+7kn−3nn11−12r22

12 , R(γ)=γ, R(δ)=δ,

K(α)=α−1, K(β)=βγ−n12δ
2k22+nn12

2 , K(γ)=γ−1, K(δ)=δ−1,

N(α)=α−1γn11δ
n11n23

2 , N(β)=β−1γn12δ
n12(n23+n)

2 , N(γ)=γδn23 , N(δ)=δ−1.

Thus R, K and N preserve the lattice Γk,m,n if and only if

n11, n12, n23 ∈ Z,
n11 − k, nn12, n11n23, n12n23 ∈ 2Z,
6m+ 7kn− 3nn11 ∈ 12Z,

n+ n23 = −2m+ nn11
k

.

With n11 = k+ 2p (p ∈ Z) and n12 = q, n23 = −r ∈ Z, we see that the identity
n+ n23 = − 2m+nn11

k reduces to

r = 2n+
2(m+ pn)

k
,(4.11)

the condition 6m+ 7kn− 3nn11 ∈ 12Z reduces to

3m+ 2kn− 3pn ∈ 6Z,(4.12)

and the remaining conditions reduce to the conditions

qn, rk, qr ∈ 2Z.(4.13)

By (4.11), rk is even. If n is even then by (4.11) and (4.12), m+rk−5pn ∈ 6Z,
which implies that m must be even.

Consequently, we have proven the following main result.
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Theorem 4.2. Given k, n ∈ N and m ∈ Z, the natural surjective homomor-
phism Θ : Aut(Γk,m,n) → UT(2,Z) splits if and only if there exists an integer
p such that

3m+ 2kn− 3pn ∈ 6Z,
m+ pn

k
∈ Z.

If n is even, then so is m.

Example 4.3. For the lattice Γ1,−1,2 of Nil4, the corresponding homomor-
phism Θ cannot split because n = 2 is even and m = −1 is odd.

Consider the lattice Γ3,1,3 of Nil4. The corresponding homomorphism Θ
cannot split, because 3m+ 2kn− 3pn = 21− 9p /∈ 6Z.

The homomorphism Θ corresponding to the lattice Γ1,−1,3 splits because
the above conditions are satisfied if we take p = −1.

Acknowledgement. The authors would like to thank the referee for reading
the manuscript thoroughly and correcting some grammar and typos.

References

[1] K. Dekimpe, Almost-Bieberbach groups: affine and polynomial structures, Lecture

Notes in Mathematics, 1639, Springer-Verlag, Berlin, 1996. https://doi.org/10.1007/
BFb0094472

[2] K. Y. Ha and J. B. Lee, Left invariant metrics and curvatures on simply connected three-

dimensional Lie groups, Math. Nachr. 282 (2009), no. 6, 868–898. https://doi.org/10.
1002/mana.200610777

[3] P. J. Kahn, Automorphisms of the discrete Heisenberg groups, preprint.

[4] J. B. Lee, K. B. Lee, J. Shin, and S. Yi, Unimodular groups of type R3oR, J. Korean Math.
Soc. 44 (2007), no. 5, 1121–1137. https://doi.org/10.4134/JKMS.2007.44.5.1121

[5] D. V. Osipov, The discrete Heisenberg group and its automorphism group, Math. Notes

98 (2015), no. 1-2, 185–188; translated from Mat. Zametki 98 (2015), no. 1, 152–155.
https://doi.org/10.4213/mzm10694

[6] S. V. Thuong, Metrics on 4-dimensional unimodular Lie groups, Ann. Global Anal.

Geom. 51 (2017), no. 2, 109–128. https://doi.org/10.1007/s10455-016-9527-z
[7] , Classification of closed manifolds with Sol14-geometry, Geom. Dedicata 199

(2019), 373–397. https://doi.org/10.1007/s10711-018-0354-1

Jong Bum Lee
Department of Mathematics
Sogang University
Seoul 04107, Korea

Email address: jlee@sogang.ac.kr

Sang Rae Lee
Department of Mathematics

Texas A&M University
College Station, Texas 77843, USA
Email address: srlee@math.tamu.edu

https://doi.org/10.1007/BFb0094472
https://doi.org/10.1007/BFb0094472
https://doi.org/10.1002/mana.200610777
https://doi.org/10.1002/mana.200610777
https://doi.org/10.4134/JKMS.2007.44.5.1121
https://doi.org/10.4213/mzm10694
https://doi.org/10.1007/s10455-016-9527-z
https://doi.org/10.1007/s10711-018-0354-1

