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KINK WAVE SOLUTIONS TO KDV-BURGERS EQUATION

WITH FORCING TERM

Yusuf Buba Chukkol and Mukhiddin Muminov

Abstract. In this paper, we used modified tanh-coth method, combined

with Riccati equation and secant hyperbolic ansatz to construct abun-
dantly many real and complex exact travelling wave solutions to KdV-

Burgers (KdVB) equation with forcing term. The real part is the sum
of the shock wave solution of a Burgers equation and the solitary wave

solution of a KdV equation with forcing term, while the imaginary part

is the product of a shock wave solution of Burgers with a solitary wave
travelling solution of KdV equation. The method gives more solutions

than the previous methods.

1. Introduction

Nonlinear waves in dynamical systems are of fundamental importance that
is receiving much attention, most especially in the field of wave propagation
in nonlinear systems. They are written in nonlinear partial differential equa-
tions (NPDE). Application of nonlinear waves cuts across many fields, which
include mixture of gas bubble in liquid [22], waves in elastic tubes [2], sys-
tems incorporating damping and dispersion [21], KP lump in ferrimagnet [23],
chemical physics and geochemistry [8]. There are many methods of solving
nonlinear wave developed by researchers over the years, including inverse scat-
tering method [34], sine-cosine method [20], homogeneous balance method [15],
first integral method [18], variational iteration method [29], Adomian decom-
position method [4], homotopy analysis method [10, 11], reduced transformed
method [19], Jacobi elliptic expansion method [5], F-expansion method [26],
exp-function method [12]. Tangent hyperbolic method to find the travelling
wave solutions of evolution equations was initially introduced by Malfliet [24],
by assuming the solution to be a series of tangent hyperbolic function, the
method received considerable attention and underwent through many improve-
ments. Fan [16] extended the method, follows by Wazwaz [27] and obtained
some other exact solutions apart from the once derived before. The extended
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method was later modified by El-wakil [6] and then by Soliman [3] to obtain
new solutions. It is important to note that the later improvements were given
different names by different authors.

One-dimensional KdV equation was first derived in 1895 to model shallow
water waves with small but finite amplitudes by Korteweg-de-Vries, which is
completely integrable and has many soliton solutions [28]. Its has applica-
tions in mixture of bubbly liquid [31] and many more [25]. Many methods of
solving the equation was presented in [28]. On the other hand, a combina-
tion of Burger’s equation and KdV equation gives rise to what is called KdVB
(Korteweg-de-Vries-Burgers) equation. Solution to the KdVB equation is a
combination of solitary wave solution and shock wave solution, whose solutions
were obtained in [7, 14, 28, 30] with applications in many area of science and
engineering [30].

The aim of this paper is to establish an extension to the above methods that
would enable us to find both real and complex travelling wave solutions to the
Korteweg-de-Vries (KdV) equation with forcing term [33] and KdVB equation
with forcing term [1,32] using the modified tanh-coth method.

2. Description of the modified tanh-coth method

We illustrate the modified tanh-coth method to obtain many exact travelling
wave solutions for nonlinear evolution equations. Let

(1) ut = P (u, ux, uxx, uxxx, . . .)

be a partial differential equation (PDE) in two independent variables x and t.
We introduced a travelling wave solution of the form

(2) u (x, t) = u (Ω) , Ω = k

(
x−

∫
c (t) dt

)
,

where k and
∫
c (t) dt are the wave number and velocity of the travelling wave

to be determined later. We suppose that

(3) u(Ω) = w(Ω) +

∫
f (t) dt.

Equation (1) using (2) and (3) is reduced to an ordinary differential equation
(ODE) of the form

(4) − c (t) kw
′
(Ω) = P

(
w (Ω) , kw

′
(Ω) , k2w

′′
(Ω) , . . .

)
.

The ODE (4) is then solved using the modified tanh-coth method [26], by
assuming finite series of functions of the form

(5) w (Ω) = S (Y ) =

m∑
i=0

aiY
i +

m∑
i=1

biY
−i,
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together with the Riccati equation

(6)
dY

dΩ
= A + BY + CY 2 .

Change of variables leads to

(7)

d

dΩ
=
(
A + BY + CY 2

) d

dY
,

d2

dΩ2
=
(
A + BY + CY 2

)(
(B + 2CY )

d

dY
+
(
A + BY + CY 2

) d2

dY 2

)
,

where ai (i = 0, 1 , 2, . . . ,m), bi (i = 1 , 2, . . . ,m), A, B and C are constants to
be obtained later. The parameter m is a positive real number obtained by
balancing the highest order linear term with the nonlinear term in equation (4)
[21]. Inserting equation (5) into (4) using (2) produces a system of equations
in powers of Y i. As the Y i vanishes, we can obtain ai (i = 0, 1, 2, . . . ,m),
bi (i = 1, 2, . . . ,m), k and c(t). We will stick to the following Riccati equation
solutions

If A = 1, B = 1 and C = 0, then Y = eΩ − 1,
If A = 1/2, B = 0 and C = −1/2, then Y = cothΩ ± cschΩ.

2.1. The real solutions to KdVB equation with forcing term

The KdVB equation with forcing term is [1, 32]

(8) ut + puux − quxx + ruxxx = f(t),

where f(t) is the forcing term which is time dependent and p, q and r are real
constants. Using the transformation given by (3), equation (8) is reduced to a
homogeneous equation of the form

(9) wt + p

(
w +

∫
f (t) dt

)
wx − qwxx + rwxxx = 0.

Introducing the wave transformation given by (2), we make

(10) w (x, t) = w(Ω), Ω = k

(
x−

∫
c (t) dt

)
,

to obtain the travelling wave solutions to equation (9). Equation (9) using (10)
is reduced to an ODE of the form

(11)
− c (t) kw

′
(Ω) +

p

2
kw2

′

(Ω) + pk w
′
(Ω)

∫
f (t) dt

− qk2w
′′

(Ω) + k3rw
′′′

(Ω) = 0,

where ′ = d/dΩ. Integrating (11) with respect to Ω and letting the integration
constant to be zero, we have

(12) − c (t)w +
p

2
w2 + pw

∫
f (t) dt− qkw

′
+ k2rw

′′
= 0.
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Balancing the nonlinear term w2 with the higher order linear term w
′′

in equa-
tion (12), i.e., 2m = m + 2 implies that m = 2. The solution of (12) takes the
form

(13) w (Ω) = S (Y ) = a0 + a1Y + a2Y
2 +

b1

Y
+

b2

Y 2
.

Substituting equation (13) into equation (12) using equation (7), and equating
the corresponding coefficients of all powers of Y to zero, yields system of equa-
tions in terms of a0, a1, a2, b1, b2, k and c (t). Solving the equations we get
Case I: When A = 1, B = 1 and C = 0,

a0 = a1 = a2 = 0, b1 = −24q2

25pr
, b2 = −12q2

25pr
, k =

q

5r
,

c (t) =
6q2 − 25pr

∫
f (t) dt

25r
,

(14)

a0 = − 12q2

25pr
, a1 = a2 = 0, b1 = −24q2

25pr
, b2 = −12q2

25pr
, k =

q

5r
,(15)

c (t) =
−6q2 + 25pr

∫
f (t) dt

25r
.

Using (14) into (3), we have

(16)

u1 = −24q2

25pr

(
1

eΩ − 1

)
− 12q2

25pr

(
1

eΩ − 1

)2

+

∫
f (t) dt,

Ω =
q

5r

(
x−

∫
6q2 − 25pr

∫
f (t) dt

25r
dt

)
.

Similarly, using (15) into (3), we get

(17)

u2 = −12q2

25pr
− 24q2

25pr

(
1

eΩ − 1

)
− 12q2

25pr

(
1

eΩ − 1

)2

+

∫
f (t) dt,

Ω =
q

5r

(
x−

∫ −6q2 + 25pr
∫
f (t) dt

25r
dt

)
.

Case II: When A = 1/2, B = 0 and C = −1/2, we have the following solutions

(18)
a0 = a2 = − 3q2

25pr
, a1 = − 6q2

25pr
, b1 = b2 = 0, k =

q

5r
,

c (t) =
−6q2 + 25pr

∫
f (t) dt

25r
,

(19)
a0 =

9q2

25pr
, a1 = − 6q2

25pr
, a2 = − 3q2

25pr
, b1 = b2 = 0, k =

q

5r
,

c (t) =
6q2 + 25pr

∫
f (t) dt

25r
,
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(20)
a0 =

9q2

25pr
, a1 = a2 = 0, b1 =

−6q2

25pr
, b2 = − 3q2

25pr
, k =

q

5r
,

c (t) =
6q2 + 25pr

∫
f (t) dt

25r
,

(21)
a1 = a2 = 0, a0 = b2 =

−3q2

25pr
, b1 = − 6q2

25pr
, k =

q

5r
,

c(t) =
−6q2 + 25pr

∫
f (t) dt

25r
,

(22)
a0 =

3q2

100pr
, a1 = b1 =

−3q2

25pr
, a2 = b2 = − 3q2

100pr
, k =

q

10r
,

c (t) =
6q2 + 25pr

∫
f (t) dt

25r
,

(23)
a0 =

−9q2

50pr
, a1 = b1 =

−3q2

25pr
, a2 = b2 = − 3q2

100pr
, k =

q

10r
,

c (t) =
−6q2 + 25pr

∫
f (t) dt

25r
.

Using (18) into (3) we have

(24)

u3 = − 3q2

25pr
− 6q2

25pr
(cothΩ ± cschΩ) − 3q2

25pr
(cothΩ ± cschΩ)

2

+

∫
f (t) dt, Ω =

q

5r

(
x−

∫ −6q2 + 25pr
∫
f (t) dt

25r
dt

)
.

Using (19) into (3)

(25)

u4 =
9q2

25pr
− 6q2

25pr
(cothΩ ± cschΩ) − 3q2

25pr
(cothΩ ± cschΩ)

2

+

∫
f (t) dt, Ω =

q

5r

(
x−

∫
6q2 + 25pr

∫
f (t) dt

25r
dt

)
.

Using (20) into (3)

(26)

u5 =
9q2

25pr
− 6q2

25pr

1

(cothΩ ± cschΩ)
− 3q2

25pr

1

(cothΩ ± cschΩ)
2

+

∫
f (t) dt, Ω =

q

5r

(
x−

∫
6q2 + 25pr

∫
f (t) dt

25r
dt

)
.

Using (21) into (3)

(27)

u6 =
−3q2

25pr
− 6q2

25pr

1

(cothΩ ± cschΩ)
− 3q2

25pr

1

(cothΩ ± cschΩ)
2

+

∫
f (t) dt, Ω =

q

5r

(
x−

∫ −6q2 + 25pr
∫
f (t) dt

25r
dt

)
.



690 Y. B. CHUKKOL AND M. MUMINOV

Using (22) into (3)

(28)

u7 =
3q2

100pr
− 3q2

25pr
(cothΩ ± cschΩ) − 3q2

100pr
(cothΩ ± cschΩ)

2

− 3q2

25pr

1

(cothΩ ± cschΩ)
− 3q2

100pr

1

(cothΩ ± cschΩ)
2 +

∫
f (t) dt,

Ω =
q

5r

(
x−

∫
6q2 + 25pr

∫
f (t) dt

25r
dt

)
.

Using (23) into (3)

(29)

u8 =
−9q2

50pr
− 3q2

25pr
(cothΩ ± cschΩ) − 3q2

100pr
(cothΩ ± cschΩ)

2

− 3q2

25pr

1

(cothΩ ± cschΩ)
− 3q2

100pr

1

(cothΩ ± cschΩ)
2 +

∫
f (t) dt,

Ω =
q

10r

(
x−

∫ −6q2 + 25pr
∫
f (t) dt

25r
dt

)
.

Some of the solutions obtained here using this method are new compared to
the ones obtained in [1, 9].

2.2. A complex solution to KdVB with forcing term

We introduced a secant hyperbolic ansatz in the form

(30) w (Ω) = ϕ (Ω) + Φ (Ω) sechΩ .

Substituting (30) into (12), we have

(31)

1

2
pΦ2

(
1 − tanh2Ω

)
− c (t)ϕ +

1

2
pϕ2 + pϕ

∫
f (t) dt− qkϕ′

+ rk2ϕ
′′

+
[
2 rk2Φ tanh2 Ω − 2 rk2Φ′ tanh Ω + qkΦ tanh Ω − rk2Φ

+rk2Φ
′′

+ pϕΦ + pΦ

∫
f (t) dt− qkΦ′ − c (t) Φ

]
sechΩ = 0,

where sech2Ω = 1 − tanh2Ω is used. Setting the coefficients of sechΩ equals to
zero, we obtained the following set of ordinary differential equations

(32)

[
2 rk2Φ tanh2 Ω − 2 rk2Φ′ tanh Ω + qkΦ tanh Ω − rk2Φ

+rk2Φ
′′

+ pϕΦ + pΦ

∫
f (t) dt− qkΦ′ − c (t) Φ

]
= 0,

1

2
pΦ2

(
1 − tanh2Ω

)
− c (t)ϕ +

1

2
pϕ2 + pϕ

∫
f (t) dt

− qkϕ′ + rk2ϕ
′′

= 0.

Assuming the degrees of ϕ and Φ are m and n, balancing their nonlinear terms
and highest order derivatives, we have m = 2 and n = 1. Therefore, the
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tanh-coth equations for ϕ and Φ take the following forms

(33)

ϕ (Y ) = a0 + a1Y + a2Y
2 +

a3

Y
+

a4

Y 2
,

Φ (Y ) = b0 + b1Y +
b2

Y
,

where Y = tanh(Ω), which satisfied (7), and ai (i = 0, 1, 2, 3, 4), bi (i = 0, 1, 2)
are constants to be determined from the solution. Substituting (33) into (32)
using (7), we obtained a system of equations in terms of a0, a1, a2, a3, a4,
b0, b1, b2, k, c(t), and whose solutions are as follows,
Case I:

(34a)

a0 = 0, a1 = − 6q2

25pr
, a2 = − 6q2

25pr
, a3 = a4 = 0,

b0 = ± i
6q2

25pr
, b1 = ±i

6q2

25pr
, b2 = 0, k =

q

5r
,

c(t) = −
6q2 − 25

∫
f (t) dt

25r
.

Case II:

(34b)

a0 = 0, a1 = +
6q2

25pr
, a2 = − 6q2

25pr
, a3 = a4 = 0,

b0 = ∓ i
6q2

25pr
, b1 = ±i

6q2

25pr
, b2 = 0, k = − q

5r
,

c(t) = −
6q2 − 25

∫
f (t) dt

25r
.

Case III:

(34c)

a0 =
12q2

25pr
, a1 = − 6q2

25pr
, a2 = − 6q2

25pr
, a3 = a4 = 0,

b0 = ± i
6q2

25pr
, b1 = ±i

6q2

25pr
, b2 = 0, k =

q

5r
,

c(t) =
6q2 + 25

∫
f (t) dt

25r
.

Case IV:

(34d)

a0 =
12q2

25pr
, a1 = +

6q2

25pr
, a2 = − 6q2

25pr
, a3 = 0, a4 = 0,

b0 = ∓ i
6q2

25pr
, b1 = ±i

6q2

25pr
, b2 = 0, k = − q

5r
,

c(t) =
6q2 + 25pr

∫
f (t) dt

25r
.
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Introducing (34a)-(34d) into (33), we have

(35a)

ϕ (Ω) = − 6q2

25pr

(
tanhΩ + tanh2Ω

)
,

Φ (Ω) = ± i
6q2

25pr
(1 + tanhΩ ) ,

Ω =
q

5r

(
x +

∫
6q2 − 25pr

∫
f (t) dt

25r
dt

)
,

(35b)

ϕ (Ω) =
6q2

25pr

(
tanhΩ − tanh2Ω

)
,

Φ (Ω) = i
6q2

25pr
(∓1 ± tanhΩ ) ,

Ω = − q

5r

(
x +

∫
6q2 − 25

∫
f (t) dt

25r
dt

)
,

(35c)

ϕ (Ω) =
12q2

25pr
− 6q2

25pr
tanhΩ − 6q2

25pr
tanh2Ω,

Φ (Ω) = ± i
6q2

25pr
(1 + tanhΩ) ,

Ω =
q

5r

(
x−

∫
6q2 + 25pr

∫
f (t) dt

25r
dt

)
,

(35d)

ϕ (Ω) =
12q2

25pr
+

6q2

25pr
tanhΩ − 6q2

25pr
tanh2Ω,

Φ (Ω) = i
6q2

25pr
(∓1 ± tanhΩ) ,

Ω = − q

5r

(
x−

∫
6q2 + 25pr

∫
f (t) dt

25r
dt

)
.

Substituting (35a)-(35d) into (30), equation (3) which is a solution to (8) gives
the following complex solutions to the KdVB equation with forcing term in the
form

(36a)

u9,10 =
6q2

25pr

(
−1 − tanhΩ + sech2Ω

)
± i

6q2

25pr
(1 + tanhΩ) sechΩ

+

∫
f (t) dt, Ω =

q

5r

(
x +

∫
6q2 − 25pr

∫
f (t) dt

25r
dt

)
,

(36b)

u11,12 =
6q2

25pr

(
−1 + tanhΩ + sech2Ω

)
+ i

6q2

25pr
(∓1 ± tanhΩ) sechΩ

+

∫
f (t) dt, Ω = − q

5r

(
x +

∫
6q2 − 25pr

∫
f (t) dt

25r
dt

)
,
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(36c)

u13,14 =
6q2

25pr

(
1 − tanhΩ + sech2Ω

)
± i

6q2

25pr
(1 + tanhΩ) sechΩ

+

∫
f (t) dt, Ω =

q

5r

(
x−

∫
6q2 + 25pr

∫
f (t) dt

25r
dt

)
,

(36d)

u15,16 =
6q2

25pr

(
1 + tanhΩ + sech2Ω

)
+ i

6q2

25pr
(∓1 ± tanhΩ) sechΩ

+

∫
f (t) dt, Ω = − q

5r

(
x−

∫
6q2 + 25pr

∫
f (t) dt

25r
dt

)
.

The solutions u9,10, u11,12, u13,14 and u15,16 form the exact complex travelling
wave solutions to KdVB equation with forcing term. A complex solutions for
one dimensional KdVB equation with a positive coefficient dissipative term
without forcing term is given in [13], while the complex line solutions for two
dimensional KdVB equation without forcing term is derived in [17]. All the
complex travelling wave solutions to the KdVB equation with forcing term are
new.

3. Conclusion

We employed a modified tanh-coth equation method, combined with Riccati
equation to find abundantly many real exact solutions to KdVB equation with
forcing term. With the help of secant hyperbolic ansatz, more general complex
travelling wave solutions of the KdVB equation with forcing term are obtained.
This approach has been successfully applied to obtain some real and complex
kink wave solutions to KdVB equation with forcing term and constant coeffi-
cients. We noticed that the real part is the sum of the shock wave solution of a
Burgers equation and the solitary wave solution of a KdV equation with forcing,
while the imaginary part is the product of a shock wave solution of Burgers with
a solitary wave travelling solution of KdV equation. The method adopted here
gives more solutions than the previous methods. This paper showed that the
secant hyperbolic ansatz and tanh-coth method combined with Riccati equa-
tion gives a unified approach of constructing complex travelling wave solution
to many nonlinear partial differential equations.
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[26] A. H. Salas S and C. A. Gómez S, Exact solutions for a third-order KdV equation with

variable coefficients and forcing term, Math. Probl. Eng. 2009 (2009), Art. ID 737928,

13 pp. https://doi.org/10.1155/2009/737928
[27] A. M. Wazwaz, The extended tanh method for new solitons solutions for many forms

of the fifth-order KdV equations, Appl. Math. Comput. 184 (2007), no. 2, 1002–1014.

https://doi.org/10.1016/j.amc.2006.07.002

[28] , Partial differential equations and solitary waves theory, Nonlinear Physical

Science, Higher Education Press, Beijing, 2009. https://doi.org/10.1007/978-3-642-

00251-9

[29] , Partial differential equations and solitary waves theory, Nonlinear Physical

Science, Higher Education Press, Beijing, 2009. https://doi.org/10.1007/978-3-642-
00251-9

[30] L. Wazzan, A modified tanh-coth method for solving the KdV and the KdV-Burgers’

equations, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), no. 2, 443–450. https:
//doi.org/10.1016/j.cnsns.2007.06.011

[31] L. V. Wijngaarden, On the equations of motion for mixtures of liquid and gas bubbles,

J. Fluid Mech. 33 (1968), no. 3, 465–474.
[32] N. Zahibo, E. Pelinovsky, and A. Sergeeva, Weakly damped KdV soliton dynamics with

the random force, Chaos Solitons Fractals 39 (2009), no. 4, 1645–1650.

[33] S. Zhang, Exp-function method exactly solving the KdV equation with forcing term,
Appl. Math. Comput. 197 (2008), no. 1, 128–134. https://doi.org/10.1016/j.amc.

2007.07.041

[34] S. Zhang and J. Li, Soliton solutions and dynamical evolutions of a generalized akns
system in the framework of inverse scattering transform, Optik 137 (2017), 228–237.

Yusuf Buba Chukkol

Department of Mathematical Sciences
Universiti Teknologi Malaysia

81310 Johor Bahru, Malaysia

Email address: bcyusuf2@live.utm.my

Mukhiddin Muminov

Department of Mathematical Sciences
Universiti Teknologi Malaysia

81310 Johor Bahru, Malaysia

Email address: mukhiddin@utm.my

https://doi.org/10.1119/1.17120
https://doi.org/10.1007/s40819-015-0085-z
https://doi.org/10.1007/s40819-015-0085-z
https://doi.org/10.1155/2009/737928
https://doi.org/10.1016/j.amc.2006.07.002
https://doi.org/10.1007/978-3-642-00251-9
https://doi.org/10.1007/978-3-642-00251-9
https://doi.org/10.1007/978-3-642-00251-9
https://doi.org/10.1007/978-3-642-00251-9
https://doi.org/10.1016/j.cnsns.2007.06.011
https://doi.org/10.1016/j.cnsns.2007.06.011
https://doi.org/10.1016/j.amc.2007.07.041
https://doi.org/10.1016/j.amc.2007.07.041

