DOI QR코드

DOI QR Code

Traction force microscopy for understanding cellular mechanotransduction

  • Hur, Sung Sik (Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University) ;
  • Jeong, Ji Hoon (Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University) ;
  • Ban, Myung Jin (Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University) ;
  • Park, Jae Hong (Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University) ;
  • Yoon, Jeong Kyo (Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University) ;
  • Hwang, Yongsung (Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University)
  • Received : 2019.12.03
  • Published : 2020.02.29

Abstract

Under physiological and pathological conditions, mechanical forces generated from cells themselves or transmitted from extracellular matrix (ECM) through focal adhesions (FAs) and adherens junctions (AJs) are known to play a significant role in regulating various cell behaviors. Substantial progresses have been made in the field of mechanobiology towards novel methods to understand how cells are able to sense and adapt to these mechanical forces over the years. To address these issues, this review will discuss recent advancements of traction force microscopy (TFM), intracellular force microscopy (IFM), and monolayer stress microscopy (MSM) to measure multiple aspects of cellular forces exerted by cells at cell-ECM and cell-cell junctional intracellular interfaces. We will also highlight how these methods can elucidate the roles of mechanical forces at interfaces of cell-cell/cell-ECM in regulating various cellular functions.

Keywords

References

  1. Ingber D (2003) Mechanobiology and diseases of mechanotransduction. Ann Med 35, 564-577 https://doi.org/10.1080/07853890310016333
  2. Hahn C and Schwartz MA (2009) Mechanotransduction in vascular physiology and atherogenesis. Nat Rev Mol Cell Biol 10, 53-62 https://doi.org/10.1038/nrm2596
  3. Choquet D, Felsenfeld DP and Sheetz MP (1997) Extracellular matrix rigidity causes strengthening of integrincytoskeleton linkages. Cell 88, 39-48 https://doi.org/10.1016/S0092-8674(00)81856-5
  4. Vogel V and Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7, 265-275 https://doi.org/10.1038/nrm1890
  5. Riveline D, Zamir E, Balaban NQ et al (2001) Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol 153, 1175-1186 https://doi.org/10.1083/jcb.153.6.1175
  6. Yonemura S, Wada Y, Watanabe T, Nagafuchi A and Shibata M (2010) ${\alpha}$-Catenin as a tension transducer that induces adherens junction development. Nat Cell Biol 12, 533-542 https://doi.org/10.1038/ncb2055
  7. Bosveld F, Bonnet I, Guirao B et al (2012) Mechanical control of morphogenesis by Fat/Dachsous/Four-jointed planar cell polarity pathway. Science 336, 724-727 https://doi.org/10.1126/science.1221071
  8. Curry F and Adamson R (2012) Endothelial glycocalyx: permeability barrier and mechanosensor. Ann Biomed Eng 40, 828-839 https://doi.org/10.1007/s10439-011-0429-8
  9. Swift J, Ivanovska IL, Buxboim A et al (2013) Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 https://doi.org/10.1126/science.1240104
  10. Chen CS, Alonso JL, Ostuni E, Whitesides GM and Ingber DE (2003) Cell shape provides global control of focal adhesion assembly. Biochem Biophys Res Commun 307, 355-361 https://doi.org/10.1016/S0006-291X(03)01165-3
  11. Du Roure O, Saez A, Buguin A et al (2005) Force mapping in epithelial cell migration. Proc Natl Acad Sci U S A 102, 2390-2395 https://doi.org/10.1073/pnas.0408482102
  12. Discher DE, Janmey P and Wang Yl (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139-1143 https://doi.org/10.1126/science.1116995
  13. Engler AJ, Sen S, Sweeney HL and Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126, 677-689 https://doi.org/10.1016/j.cell.2006.06.044
  14. Major LG, Holle AW, Young JL et al (2019) Volume adaptation controls stem cell mechanotransduction. ACS Appl Mater Interfaces 11, 45520-45530 https://doi.org/10.1021/acsami.9b19770
  15. Lo CM, Wang HB, Dembo M and Wang Yl (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79, 144-152 https://doi.org/10.1016/S0006-3495(00)76279-5
  16. Morin Jr TR, Ghassem-Zadeh SA and Lee J (2014) Traction force microscopy in rapidly moving cells reveals separate roles for ROCK and MLCK in the mechanics of retraction. Exp Cell Res 326, 280-294 https://doi.org/10.1016/j.yexcr.2014.04.015
  17. Miroshnikova YA, Mouw JK, Barnes JM et al (2016) Tissue mechanics promote IDH1-dependent $HIF1{\alpha}$-tenascin C feedback to regulate glioblastoma aggression. Nat Cell Biol 18, 1336-1345 https://doi.org/10.1038/ncb3429
  18. Czirok A, Zamir EA, Filla MB, Little CD and Rongish BJ (2006) Extracellular matrix macroassembly dynamics in early vertebrate embryos. Curr Top Dev Biol 73, 237-258 https://doi.org/10.1016/S0070-2153(05)73008-8
  19. Dallas SL, Chen Q and Sivakumar P (2006) Dynamics of assembly and reorganization of extracellular matrix proteins. Curr Top Dev Biol 75, 1-24 https://doi.org/10.1016/S0070-2153(06)75001-3
  20. Plotnikov SV, Pasapera AM, Sabass B and Waterman CM (2012) Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell 151, 1513-1527 https://doi.org/10.1016/j.cell.2012.11.034
  21. Zaidel-Bar R, Cohen M, Addadi L and Geiger B (2004) Hierarchical assembly of cell-matrix adhesion complexes. Biochem Soc Trans 32, 416-420 https://doi.org/10.1042/bst0320416
  22. Cavalcanti-Adam EA, Volberg T, Micoulet A, Kessler H, Geiger B and Spatz JP (2007) Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys J 92, 2964-2974 https://doi.org/10.1529/biophysj.106.089730
  23. Huebsch N, Arany PR, Mao AS et al (2010) Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat Mater 9, 518-526 https://doi.org/10.1038/nmat2732
  24. McBeath R, Pirone DM, Nelson CM, Bhadriraju K and Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6, 483-495 https://doi.org/10.1016/S1534-5807(04)00075-9
  25. Engler AJ, Griffin MA, Sen S, Bonnemann CG, Sweeney HL and Discher DE (2004) Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol 166, 877-887 https://doi.org/10.1083/jcb.200405004
  26. Wen JH, Vincent LG, Fuhrmann A et al (2014) Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat Mater 13, 979-987 https://doi.org/10.1038/nmat4051
  27. Dembo M and Wang YL (1999) Stresses at the cellto-substrate interface during locomotion of fibroblasts. Biophys J 76, 2307-2316 https://doi.org/10.1016/S0006-3495(99)77386-8
  28. Harris AK, Stopak D and Wild P (1981) Fibroblast traction as a mechanism for collagen morphogenesis. Nature 290, 249-251 https://doi.org/10.1038/290249a0
  29. Polacheck WJ and Chen CS (2016) Measuring cell-generated forces: a guide to the available tools. Nat Methods 13, 415-423 https://doi.org/10.1038/nmeth.3834
  30. Balaban NQ, Schwarz US, Riveline D et al (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3, 466-472 https://doi.org/10.1038/35074532
  31. Vining KH and Mooney DJ (2017) Mechanical forces direct stem cell behaviour in development and regeneration. Nat Rev Mol Cell Biol 18, 728-742 https://doi.org/10.1038/nrm.2017.108
  32. Razafiarison T, Holenstein CN, Stauber T et al (2018) Biomaterial surface energy-driven ligand assembly strongly regulates stem cell mechanosensitivity and fate on very soft substrates. Proc Natl Acad Sci U S A 115, 4631-4636 https://doi.org/10.1073/pnas.1704543115
  33. Hur SS, Zhao Y, Li YS, Botvinick E and Chien S (2009) Live cells exert 3-dimensional traction forces on their substrata. Cell Mol Bioeng 2, 425-436 https://doi.org/10.1007/s12195-009-0082-6
  34. Del Alamo JC, Meili R, Alonso-Latorre B et al (2007) Spatio-temporal analysis of eukaryotic cell motility by improved force cytometry. Proc Natl Acad Sci U S A 104, 13343-13348 https://doi.org/10.1073/pnas.0705815104
  35. Razafiarison T, Silvan U, Meier D and Snedeker JG (2016) Surface-Driven Collagen Self-Assembly Affects Early Osteogenic Stem Cell Signaling. Adv Healthc Mater 5, 1481-1492 https://doi.org/10.1002/adhm.201600128
  36. Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K and Chen CS (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci U S A 100, 1484-1489 https://doi.org/10.1073/pnas.0235407100
  37. Fu J, Wang YK, Yang MT et al (2010) Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat Methods 7, 733-736 https://doi.org/10.1038/nmeth.1487
  38. Wang YK, Yu X, Cohen DM et al (2012) Bone morphogenetic protein-2-induced signaling and osteogenesis is regulated by cell shape, RhoA/ROCK, and cytoskeletal tension. Stem Cells Dev 21, 1176-1186 https://doi.org/10.1089/scd.2011.0293
  39. Maskarinec SA, Franck C, Tirrell DA and Ravichandran G (2009) Quantifying cellular traction forces in three dimensions. Proc Natl Acad Sci U S A 106, 22108-22113 https://doi.org/10.1073/pnas.0904565106
  40. Ruder WC and LeDuc PR (2012) Cells gain traction in 3D. Proc Natl Acad Sci U S A 109, 11060-11061 https://doi.org/10.1073/pnas.1208617109
  41. Legant WR, Choi CK, Miller JS et al (2013) Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions. Proc Natl Acad Sci U S A 110, 881-886 https://doi.org/10.1073/pnas.1207997110
  42. Legant WR, Miller JS, Blakely BL, Cohen DM, Genin GM and Chen CS (2010) Measurement of mechanical tractions exerted by cells in three-dimensional matrices. Nat Methods 7, 969-971 https://doi.org/10.1038/nmeth.1531
  43. Steinwachs J, Metzner C, Skodzek K et al (2016) Threedimensional force microscopy of cells in biopolymer networks. Nat Methods 13, 171-176 https://doi.org/10.1038/nmeth.3685
  44. Hall MS, Alisafaei F, Ban E et al (2016) Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs. Proc Natl Acad Sci U S A 113, 14043-14048 https://doi.org/10.1073/pnas.1613058113
  45. Wang N, Tolic-Norrelykke IM, Chen J et al (2002) Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am J Physiol Cell Physiol 282, C606-616 https://doi.org/10.1152/ajpcell.00269.2001
  46. Maruthamuthu V, Sabass B, Schwarz US and Gardel ML (2011) Cell-ECM traction force modulates endogenous tension at cell-cell contacts. Proc Natl Acad Sci U S A 108, 4708-4713 https://doi.org/10.1073/pnas.1011123108
  47. Hur SS, del Alamo JC, Park JS et al (2012) Roles of cell confluency and fluid shear in 3-dimensional intracellular forces in endothelial cells. Proc Natl Acad Sci U S A 109, 11110-11115 https://doi.org/10.1073/pnas.1207326109
  48. Alonso-Latorre B, Del Alamo JC, Meili R, Firtel RA and Lasheras JC (2011) An Oscillatory Contractile Pole-Force Component Dominates the Traction Forces Exerted by Migrating Amoeboid Cells. Cell Mol Bioeng 4, 603-615 https://doi.org/10.1007/s12195-011-0184-9
  49. Tseng Q, Duchemin-Pelletier E, Deshiere A et al (2012) Spatial organization of the extracellular matrix regulates cell-cell junction positioning. Proc Natl Acad Sci U S A 109, 1506-1511 https://doi.org/10.1073/pnas.1106377109
  50. Mertz AF, Che Y, Banerjee S et al (2013) Cadherin-based intercellular adhesions organize epithelial cell-matrix traction forces. Proc Natl Acad Sci U S A 110, 842-847 https://doi.org/10.1073/pnas.1217279110
  51. Liu Z, Tan JL, Cohen DM et al (2010) Mechanical tugging force regulates the size of cell-cell junctions. Proc Natl Acad Sci U S A 107, 9944-9949 https://doi.org/10.1073/pnas.0914547107
  52. Ng MR, Besser A, Brugge JS and Danuser G (2014) Mapping the dynamics of force transduction at cell-cell junctions of epithelial clusters. Elife 3, e03282 https://doi.org/10.7554/eLife.03282
  53. Tambe DT, Hardin CC, Angelini TE et al (2011) Collective cell guidance by cooperative intercellular forces. Nat Mater 10, 469-475 https://doi.org/10.1038/nmat3025
  54. Tambe DT, Croutelle U, Trepat X et al (2013) Monolayer stress microscopy: limitations, artifacts, and accuracy of recovered intercellular stresses. PLoS One 8, e55172 https://doi.org/10.1371/journal.pone.0055172
  55. Serrano R, Aung A, Yeh YT, Varghese S, Lasheras JC and del Alamo JC (2019) Three-Dimensional Monolayer Stress Microscopy. Biophys J 117, 111-128 https://doi.org/10.1016/j.bpj.2019.03.041