DOI QR코드

DOI QR Code

Preparation and Characterization of Swallow-Tail Terrylene Bisimide as Organic Phosphor

Swallow-Tail Terrylene Bisimide 적색 유기 형광체 제조 및 특성 연구

  • Jung, Sung Bong (Interdisciplinary Program of LED and Solid State Lighting Engineering, Pukyong National University Graduate School) ;
  • Jeong, Yeon Tae (Interdisciplinary Program of LED and Solid State Lighting Engineering, Pukyong National University Graduate School)
  • 정성봉 (부경대학교 대학원 LED공학협동과정) ;
  • 정연태 (부경대학교 대학원 LED공학협동과정)
  • Received : 2019.12.13
  • Accepted : 2020.01.21
  • Published : 2020.05.01

Abstract

Perylene bisimide derivatives are developed for red organic phosphor because of their advantages, such as excellent luminous efficiency and high thermal stability. Despite these advantages, they have poor solubility characteristics in organic solvents and short emission wavelength as red organic phosphor for hybrid light-emitting diodes (LEDs). In this study, we prepared terrylene bisimide using a coupling reaction and swallow-tail imide group, which has excellent solubility. The structures and properties of swallow-tail terrylene bisimide (9C) were analyzed using 1H-nuclear magnetic resonance (1H-NMR), Fourier-transform infrared (FT-IR), UV/Vis spectroscopy, and thermal gravimetric analysis (TGA). The maximum absorption wavelength of (9C) in the UV/Vis spectrum was 647 nm, and the maximum emission wavelength was 676 nm. In the TGA, (9C) demonstrated good thermal stability with less than 5 wt% weight loss up to 415℃. In the solubility test, (9C) has a good solubility of more than 5 wt% in chloroform and dichloromethane. When the compounds (9C) were mixed with PMMA (polymethly methacrylate), the films showed peaks at 680 nm in the PL spectra. The results verify the suitability of (9C) as a red organic phosphor for hybrid LEDs.

Keywords

References

  1. Y. J. Sim, I. T. Kim, and A. S. Choi, J. Korean Inst. Illum. Electr. Install. Eng., 29, 1 (2015). [DOI: https://doi.org/10.5207/JIEIE.2015.29.1.001]
  2. B. H. Jeong, N. O. Kim, D. G. Kim, G. G. Oh, G. B. Cho, and K. Y. Lee, J. Korean Inst. Illum. Electr. Install. Eng., 23, 23 (2009). [DOI: https://doi.org/10.5207/JIEIE.2009.23.12.023]
  3. J. Y. Lee, S. J. Lee, T. W. Kim, and I. Yu, J. Korean Inst. Electr. Electron. Mater. Eng., 24, 27 (2011). [DOI: https://doi.org/10.4313/JKEM.2011.24.1.27]
  4. N. J. Findlay, J. Bruckbauer, A. R. Inigo, B. Breig, S. Arumugam, D. J. Wallis, R. W. Martin, and P. J. Skabara, Adv. Mater., 26, 7290 (2014). [DOI: https://doi.org/10.1002/adma.201402661]
  5. S. Y. Cho and J. W. Song, J. Inst. Electron. Inf. Eng., 51, 167 (2014). [DOI: http://doi.org/10.5573/ieie.2014.51.8.167]
  6. C. Huang, S. Barlow, and S. R. Marder, J. Org. Chem., 76, 2386 (2011). [DOI: https://doi.org/10.1021/jo2001963]
  7. S. Stappert, C. Li, K. Mullen, and T. Basche, Chem. Mater., 28, 906 (2016). [DOI: https://doi.org/10.1021/acs.chemmater.5b04602]
  8. T. Heek, F. Wurthner, and R. Haag, Chem. Eur. J., 19, 10911 (2013). [DOI: https://doi.org/10.1002/chem.201300556]
  9. K. S. Park and Y. T. Jeong, J. Korean Inst. Electr. Electron. Mater. Eng., 24, 398 (2011). [DOI: https://doi.org/10.4313/JKEM.2011.24.5.398]
  10. S. M. Lee and Y. T. Jeong, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 48 (2017). [DOI: https://doi.org/10.4313/JKEM.2017.30.1.48]
  11. Y. D. Kim and C. S. Ko, Econ. Environ. Geol., 43, 505 (2010).
  12. F. Nolde, W. Pisula, S. Muller, C. Kohl, and K. Mullen, Chem. Mater., 18, 3715 (2006). [DOI: https://doi.org/10.1021/cm060742c]
  13. S. B. Jung and Y. T. Jeong, J. Korean Inst. Electr. Electron. Mater. Eng., 32, 86 (2019). [DOI: https://doi.org/10.4313/JKEM.2019.32.1.86]